

CPAIOR-2014, Cork/Ireland, 23 May 2014

Experience in industrial deployment of Constraint Programming technology

Mehmet Dincbas

COSYTEC

Orsay, France

www.cosytec.com

Plan

Plan of the talk

- **→** A bit History (CP, ECRC, COSYTEC)
- Applications areas for CP
- Business sectors for CP
- **▼** What CP brings / benefits
- Specific requirements in industrial contexts
- **▼** Issues in design, development & deployment
- Case Studies

History / Constraint Programming

CP : A powerful computing paradigm

- Appeared in 80's in the LP community (CLP)
- Mixing declarative programming (LP) with "constraints solving"
- Efficiency by combining "constraint reasoning" and "search procedures"
- **▼** Integration of different techniques : AI, OR, Discrete Maths

CLP / Pioneers

▼ Prolog III : Univ. Marseille (F)

ightharpoonup CLP(R) : IBM (USA)

CHIP : ECRC/Munich (D)

History / From ECRC to COSYTEC

- **◆ ECRC : Research in CLP (1985->1990)**
 - CHIP: CLP with "Finite domains", "Rationals", "Booleans"
 - **▼** Introduction of "symbolic constraints" --> combinatorial problems (cf. Alice)
 - Applications of CHIP in different domains (prototypes) :
 - OR: Project planning, Cutting-stock, Car sequencing, Warehouse location,...
 - Circuit design: Circuit verification, Fault diagnosis, Test generation,...
 - Finance: Portfolio management, Asset & Liability management, ...
- COSYTEC : Industrial deployment of CLP/CP (1990->)
 - Introduction of "global constraints"
 - Concentration of Business on advanced Planning & Scheduling applications

What types of problems?

- Industrial organizations have combinatorial problems
 - Organization of Activities/Operations (e.g. production, transport, logistics)
 - Allocation of Resources (e.g. equipments, personnel)
 - → Planning & Scheduling of Activities & Resources
 (part of « Business Process Optimization »)
- Complex Planning & Scheduling problems
 - **▼** Multiple types of constraints, hard to find a feasible solution, dynamic config,...
 - Complementary to standard business packages: ERP, SCE/M, WMS, HRMS,...
 - Alternative to other "optimization" techniques: IP/MIP, SA/GA, ad-hoc methods,...

Main Application areas for CP (1)

Production Scheduling & Supply Chain Management

- Assembly-line Design, Planning & Scheduling in Aircraft Manufacturing
- Maintenance Scheduling in Aircraft Manufacturing
- Automatic Generation of Process Operations in Metal Industry
- Real time scheduling of Steel product plant
- Optimal production scheduling in electronic components industry
- Planning Transport of Nuclear Fuel Assemblies to the Reprocessing Plant
- Circuit optimization of the primary logistics supply for multiple refineries
- Just-in time transportation from farms to factories in Food industry
- Planning & Scheduling of Resources in a Warehouse

~ ...

Main Application areas for CP (2)

Workforce (Personnel) Planning & Scheduling

- Scheduling on-board TGV trains catering services
- Crew Planning for Mediterranean Ferries
- Automatic planning of firefighting personnel schedules & duty sheets
- Scheduling of Operations for the Personnel Planning in the Cleaning Industry
- Planning and Scheduling of activities and resources in Broadcasting/TV
- Planning of technical personnel in Broadcasting Services companies
- Simulation of work shifts to optimize the organization of the Personnel of prisons
- Optimal rostering of personnel in Retail
- Course Time-tabling and automatic assignment of Students to Courses

• ...

Main Application areas for CP (3)

Miscellaneous:

- --> Configuration, Placement, Packing, Assembling, Routing, ...
- Fighter Aircraft reconfiguration
- Optimal configuration of telecommunications satellites
- Automatic allocation of stock spaces for Automobile Manufacturing Factory
- Optimization of the display panels in advertising networks in urban areas
- Optimization of take-off/landing sequence and runway allocation in Airports
- Intelligent cabling system for buildings
- Decision support in Water management

• ...

Main Business sectors for CP

Industry:

- Aeronautics/Space, Nuclear Energy, Steel/Petrochemical, Manufacturing,...
- Ex.: Airbus, Dassault, EDF, ArcelorMittal, ERG, Toyota, Alcatel-Lucent, Fujifilm

Public Administration & Transport

- **▼** Security/Emergency Services, Rail/Sea/Road/Air Transports
- **▼** Ex.: Min. Justice, Fire&Rescue Dept, Ferry(SNCM), Railways(W-Lits), JAXA

Service Sector

- Media & Broadcasting, Retail, New services
- ▼ Ex.: Canal+, Arte, RTS, France24, RTL, Ericsson BSF, Castorama,...

Planning & Scheduling Software for Resource Management and Optimization

What CP brings / Benefits

- CP: a powerful paradigm for combinatorial problems
 - **▼** High-level Modeling of Planning and Scheduling problems (cf. global constraints)
 - Efficient <u>Constraint Solving</u>, reasoning and propagation techniques
 - Flexible combination of <u>Search</u> procedures with Constraint solving
- Other important features of CP
 - **▼** Incremental constraint solving → interactive systems (Decision Support)
 - Possibility for relaxation of constraints (hard/soft)
 - Adaptability to reconfigurations
 - Fast prototype development

Specific requirements in industrial contexts

Requirements for an industrial software :

- Robustness: any use by anyone
- Scalability : up-sizing of operations
- Adaptability : change of configuration
- Connectivity : easy integration
- Portability: into any environment
- Compatibility: with older releases
- ...
- Performance of the solution: cost, resp. time, use of comp. resources,...
- Flexibility of the solution: any time / any case, scalable, parametrization,...
- Ergonomy of the solution : easy to use, understandable

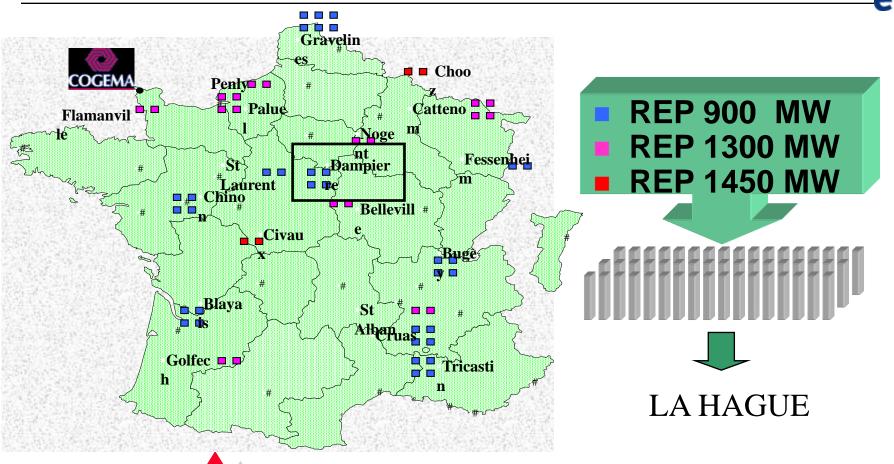
Issues for design, development & deployment

Important issues in an industrial context :

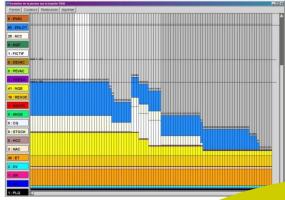
- No formal description of the problem!
- Understand the business "needs" (-> cf. "business process")
- **▼** Find the "right" problem to solve! (-> improve the business process)
- Work in collaboration with the customer for FDS (not obvious !)
- **▼** Find the "right" modeling (-> can be solved "reasonably")
- **▼** Look for a "reasonably good" solution : cost, resp. time, quality,...
- **▼** Look for a "flexible" solution : any time / any case, scalable, parameterizable
- **▼** Look for a "user-friendly" solution : easy to use, ergonomic, understandable
- **-** ---
- Acceptance of the software & solution
- Change Management (organizational issue @ Customer)

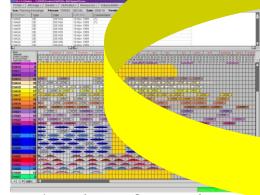
Case Studies

- Planning Transport of Nuclear Fuel Assemblies to the Reprocessing Plant
 - EDF (Electricity of France)
- Circuit optimization of the primary logistics supply for multiple refineries
 - SDIS (Fire & Rescue Department of Rhone)
- Automatic planning of firefighting personnel schedules & duty sheets
 - ERG Petroli
- Crew Planning for Mediterranean Ferries
 - SNCM (Societe Nationale Corse Mediterranee)
- Optimal rostering of personnel in Retail

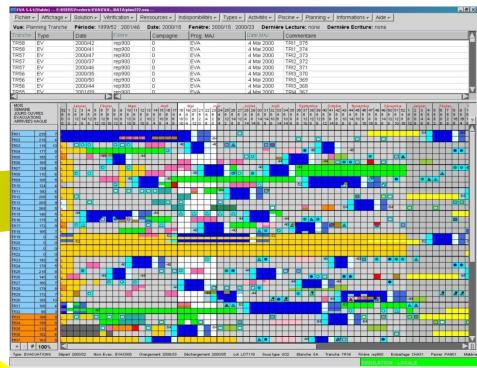


Nuclear Power Plants in France




COSYTEC

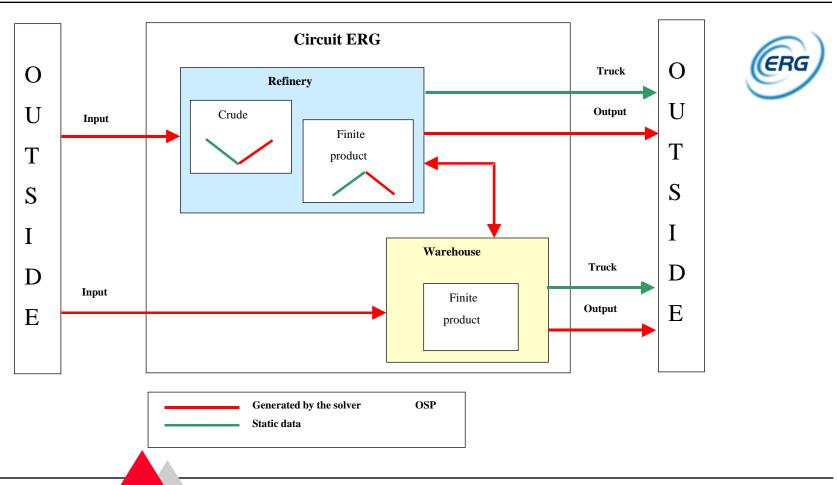
Planning Transport of Nuclear Fuel Assemblies



Evolution of pools level

Planning of containers

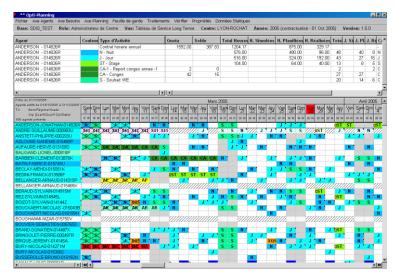
Planning of plants



Logistics for Refineries

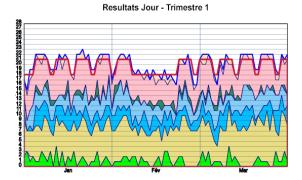
Circuit optimization of logistics for Refineries

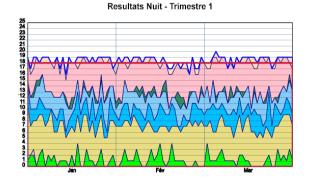
(c) 2000-2014 COSYTEC CPAIOR-Cork-2014 MD-May-2014 18


Emergency Services

Fire & Rescue Department of Rhône

- **▼ 2000 firefighters**
- 15 centers
- Regulatory Constraints (e.g.)
 - Minimum rest between 2 shifts
 - 11 hours
 - **▼** Maximum working hours
 - 48 hours maxi / 7 consecutive days
 - 44 hours maxi / 12 consecutive weeks
 - **▼** Forbidden sequences of shifts
 - Ex: Night-Day




Emergency Services (2)

♦ Fire & Rescue Department of Rhône

- Optimization
 - Annualization of 35 Hours
 - Target: 1596 hours for each agent
 - Annual planning (updating every 3 months)
 - Coverage of the needs
 - Balanced coverage throughout the year
 - Uniform distribution of the qualifications
 - Equal treatment of the agents (fairness)
 - Number of shifts (Day / Night)Week / Week-end / Holidays
 - Wishes of the agents (Rests, Week-end,...)

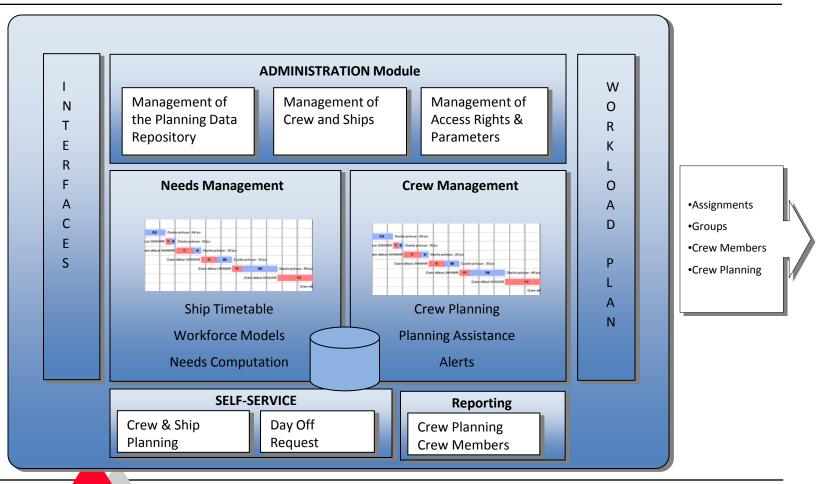
(c) 2000-2014 COSYTEC

MD-May-2014 20

Mediterranean Ferries

♦ SNCM case

- Volumetry
 - **→** 2000 crews (with 800 CDD)
 - 9 ferries
 - ▼ 4 agences portuaires (Marseille, Ajaccio, Bastia, Nice)
 - ▼ 1 200 000 passagers / year
- Very specific planning rules of « SNCM »
 - Rights to « rest »
 - Substitutions
- Different professions and qualifications
 - Captain Staff
 - ▼ Engine machinery technicians
 - Catering / room services

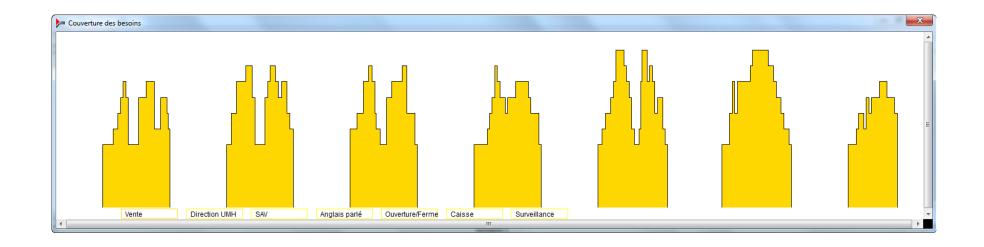


Crew Planning for Ferries

Data Bases •Crew •Functions •Diploma •Certificates •Meters

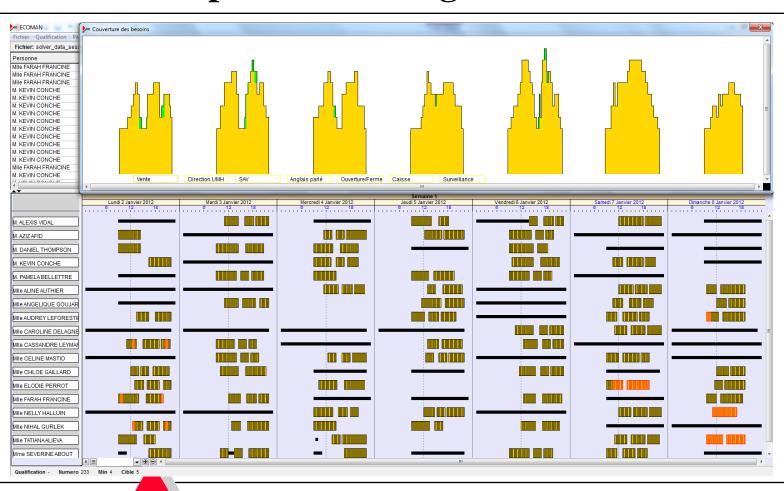
Operations

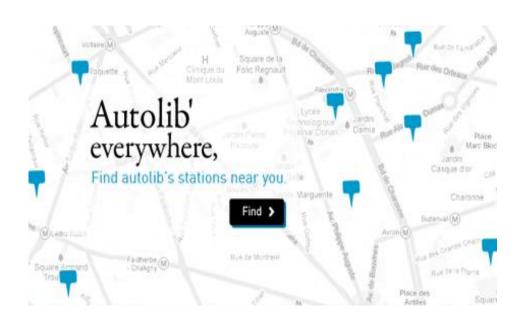
- •Timetables
 •Forecast
- •Pax
- •Technical Stop
- Other Needs



(c) 2000-2014 COSYTEC CPAIOR-Cork-2014 MD-May-2014 22

Personnel Planning in Retail


Profile of Needs / Salesmen



Optimal covering of Needs

New market / customer

