

 Document name: Formal Description and Analysis of Concepts (1) Page: 1 of 38

Dissemination: PU Version: Version 1.0 Status: Final

D2.4

Formal Description and Analysis of Concepts (1)

This document is issued within the frame and for the purpose of the LIGHT
est

 project. LIGHT
est

 has received funding from the

European Union’s Horizon 2020 research and innovation programme under G.A. No 700321.

This document and its content are the property of the Lightest Consortium. All rights relevant to this document are determined by the

applicable laws. Access to this document does not grant any right or license on the document or its contents. This document or its

contents are not to be used or treated in any manner inconsistent with the rights or interests of the Lightest Consortium or the

Partners detriment and are not to be disclosed externally without prior written consent from the Lightest Partners.

Each Lightest Partner may use this document in conformity with the Lightest Consortium Grant Agreement provisions.

Document Identification

Date 31.08.2017

Status Final

Version Version 1.0

Related WP WP 2 Related
Deliverable(s)

D2.1-2.3, D3.1-2,
D4.1, D5.1, D6.1

Lead Authors Sebastian Mödersheim,
Rasmus Birkedal

Dissemination
Level

PU

Lead
Participants

DTU Contributors FHG, TUG

Reviewers GS (now Ubisecure), CORREOS

NOT TO BE DISTRIBUTED OUTSIDE THE LIGHTEST CONSORTIUM

Ref. Ares(2017)4256030 - 31/08/2017

Formal Description and Analysis of Concepts (1)

Document name: Formal Description and Analysis of Concepts (1) Page: 2 of 38

Dissemination: PU Version: Version 1.0 Status: Final

1. Executive Summary

This deliverable D2.4 -- along with the successors D2.5 and D2.6 after project years two and

three -- represents the formal basis of the LIGHTest project. At the core, this means to develop a

formal language for describing the different aspects of the project, in particular policies for trust,

trust translation, and delegation. These must have not only a clear syntax but also a well-defined

semantics. This is important for two reasons. First we want to avoid that in some corner cases it

is unclear what a particular policy actually means. In fact, the formalization can often reveal

when different partners from academia and industry have a slightly different understanding of an

intuitive concept. Discovering and resolving such mismatches early in the project is invaluable.

Second, we want to mechanize policies, i.e., have automated verifiers to determine whether a

policy is satisfied or not; obviously such a verifier cannot reason intuitively, but needs a precise

algorithm to follow. With a precise semantics of the policy language it is possible to prove (or find

counter-examples) that this algorithm correctly implements the policy language, or even better,

automatically derive the algorithm from the policy. In fact, inspired from this latter point we have

decided to go for a logic programming approach where we have only one language, the

LIGHTest Trust Policy Language TPL that is based on Prolog and that allows for declarative

policy specification that are directly executable as soon as all concepts are concrete.

Additionally, we envision that for greatest ease of use, we can have simple, possibly visual,

languages for end users that can handle most of the common specifications and can be easily

mapped into TPL. In fact such a graphical tool is a mandatory part of several other work

packages. In this way TPL is a basis and frame for the entire project.

Formal Description and Analysis of Concepts (1)

Document name: Formal Description and Analysis of Concepts (1) Page: 3 of 38

Dissemination: PU Version: Version 1.0 Status: Final

2. Document Information

 Contributors 2.1

Name Partner

Sebastian Mödersheim DTU

Rasmus Birkedal DTU

 History 2.2

Version Date Author Changes

0.1 09.02.2017 Sebastian Mödersheim Added sections:

Trust Policy Language

TPL

Basic Scenarios in TPL

Separating Policies

from Procedures

GUI Mockup

0.2 22.06.2017 Rasmus Birkedal Added sections:

TPL Vocabulary

Further Use-Cases

0.3 14.07.2017 Rasmus Birkedal Added section:

Designing Translation

Policies

0.4 14.07.2017 Sebastian Mödersheim Updates on Translation

vs. Translation Design

0.5 18.07.2017 Sebastian Mödersheim Minor polishing

0.6 10.08.2017 Sebastian Mödersheim First Final Draft

0.7 14.08.2017 Rasmus Birkedal Final Draft

0.8 30.08.2017 Rasmus Birkedal Post-Review Draft

Formal Description and Analysis of Concepts (1)

Document name: Formal Description and Analysis of Concepts (1) Page: 4 of 38

Dissemination: PU Version: Version 1.0 Status: Final

3. Table of Contents

1. Executive Summary 2

2. Document Information 3
 Contributors ... 3 2.1
 History ... 3 2.2

3. Table of Contents 4
 Table of Figures ... 5 3.1

4. Trust Policy Language TPL 6
 Introduction .. 6 4.1
 A Detailed Definition of TPL ... 8 4.2
 Some Further Examples .. 9 4.3
 Example: ISO/IEC FDIS 29115 .. 11 4.4
 Formal Semantics .. 12 4.5

5. Basic Scenarios in TPL 15
 Boolean Trust Scheme without Translation .. 15 5.1
 Ordinal Trust Scheme without Translation ... 16 5.2
 Trust Translation Scheme Scenario ... 16 5.3

6. Separating Policies from Procedures 18

7. Formats 20

8. A Health Care Scenario 23

9. Designing Translation Policies 26
 An Example ... 26 9.1
 Designing Translations: the Rationale behind a Policy ... 27 9.2
 The Issuing Process .. 28 9.3
 Translation ... 28 9.4

10. GUI Mockup 33

11. References 36

12. Project Description 37

Formal Description and Analysis of Concepts (1)

Document name: Formal Description and Analysis of Concepts (1) Page: 5 of 38

Dissemination: PU Version: Version 1.0 Status: Final

 Table of Figures 3.1

Figure 1 Translation .. 29
Figure 2 Partially Ordered Credentials .. 30
Figure 3 Credential View ... 33
Figure 4 Credential Translation ... 34
Figure 5 Translation from Low to 1 ... 34
Figure 6 Translation from Medium to 2 ... 35
Figure 7 Translation from High to 3 ... 35

file:///C:/Users/rabi/Documents/LIGHTest/WP2/D2.4/final/D2.4_v0.1.docx%23_Toc491789650
file:///C:/Users/rabi/Documents/LIGHTest/WP2/D2.4/final/D2.4_v0.1.docx%23_Toc491789651

Formal Description and Analysis of Concepts (1)

Document name: Formal Description and Analysis of Concepts (1) Page: 6 of 38

Dissemination: PU Version: Version 1.0 Status: Final

4. Trust Policy Language TPL

 Introduction 4.1

We describe here the LIGHTest Trust Policy Langauge, shortly called TPL, for trust schemes,

trust translation schemes, and delegation schemes that can in a uniform way integrate the

different parts of the project in a precise and formal way and also serve as a basis for reasoning

(i.e., the ATV) and testing. The language is based on the existing programming language Prolog

in order to draw both from the rich research on logic programming (including existing

interpreters) and existing policy languages like Secpal and DKAL that are similarly based on

Horn clauses. Key points in favour of this choice are:

 It is trivial to formalize all simple policies that are based on a kind of enumeration.

 It offers us an easy mechanism to describe relations between concepts, e.g. what criteria

need to be satisfied to fulfill a certain standard, logical combinations of policies

(and/or/not).

 It is ideal for concepts like delegation and black-listing (for this reason for instance the

access control policy languages like SECPAL (Becker, Fournet, & Gordon, 2010) and

DKAL (Blass, Caso, & Gurevich, 2012) by Microsoft are based similarly on Horn

clauses).

 The language comes directly with a clear formal meaning including an evaluation

procedure, i.e., our specifications are directly "executable".

 We can be sure that the language is powerful enough because it is Turing complete

(every computable policy can be expressed) (Hopcroft, Motwani, & Ullman, 2003).

 The evaluation can be made to directly trigger necessary queries to servers, e.g., using

DNSSec, and process their answer; thus the bulk of the ATV can directly be encoded

into the language, either as a prototype/testing reference or even as the final product.

 For the average users we can either provide design patterns for their policy or even

interface to a simpler (possibly graphical) language that they can use more intuitively but

that is limited in expressive power. In this way one may be able to use LIGHTest without

any learning curve in 99% of all cases, but when one wants to express something really

non-standard (the remaining 1% of cases), the language still allows that.

We illustrate the flavour of the language and what specifications could look like with a few

examples. The language is based on Horn clauses that have the form

𝑐𝑜𝑛𝑐𝑙𝑢𝑠𝑖𝑜𝑛 ∶ −𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡𝑠

This loosely corresponds to a sentence of the form: “if the requirements on the right are all

satisfied, then the conclusion also holds as a result”. Note that the requirements here are

sufficient but not necessary: if the requirements are not met, there could still be another Horn

clause that allows the same conclusion.

Formal Description and Analysis of Concepts (1)

Document name: Formal Description and Analysis of Concepts (1) Page: 7 of 38

Dissemination: PU Version: Version 1.0 Status: Final

Consider as a specific example the sentence “I trust X if I trust someone that delegates to X”.

This could be expressed as a Horn clause in the following way.

𝑡𝑟𝑢𝑠𝑡(𝑋): −𝑑𝑒𝑙𝑒𝑔𝑎𝑡𝑒(𝑌, 𝑋), 𝑡𝑟𝑢𝑠𝑡(𝑌).

In the above, : − should be read as “if” in the sense of a sufficient (but not necessary) condition,

i.e., if the requirements on the right-hand side are not met, there may still be another clause to

derive that I trust X. The comma between the requirements should be read as "and". The clause

should thus be read as “I trust X if I trust Y, and Y delegates to X”. Here the terms 𝑡𝑟𝑢𝑠𝑡 and

𝑑𝑒𝑙𝑒𝑔𝑎𝑡𝑒 are not built-in parts of the (base) language, and the clause says nothing of their

meaning in isolation, i.e. nothing is said of what it means to trust or delegate to something.

However, we consider having a library of the most important terms and concepts (so users do

not have to start from scratch when specifying their own policy) and they may have also a

distinguished meaning for our ATV.

The language would then consist of a set of such clauses, each having exactly one term (the

head of the clause) before the : − (the “if”), and zero or more terms separated by commas (the

body of the clause) after the : −. Expressing trust by a bounded number of delegations in this

language could be done using the following two clauses.

𝑡𝑟𝑢𝑠𝑡(𝑋,𝑁) ∶ − 𝑡𝑟𝑢𝑠𝑡(𝑋).

𝑡𝑟𝑢𝑠𝑡(𝑋,𝑁): − 𝑁 > 0, 𝑑𝑒𝑙𝑒𝑔𝑎𝑡𝑒(𝑌, 𝑋), 𝑡𝑟𝑢𝑠𝑡(𝑌, 𝑁 − 1).

The first clause should express that I trust X through at most N steps of delegation if I trust X

directly (without considering delegation). The second clause says that I trust X through at most N

steps of delegation if N is greater than zero, Y delegates to X, and I trust Y through N-1 steps of

delegation.

One big advantage of using this language is that it happens to be valid Prolog code. It is then

possible to use a Prolog environment to evaluate the policy against a prototype, which,

conveniently, can also be specified as Prolog code. The following is a prototype meant to

express that I trust a, b, and c (this could represent that I trust these because they are listed in

some trust list), and that c delegates to d, which delegates to e.

𝑡𝑟𝑢𝑠𝑡(𝑎).

𝑡𝑟𝑢𝑠𝑡(𝑏).

𝑡𝑟𝑢𝑠𝑡(𝑐).

𝑑𝑒𝑙𝑒𝑔𝑎𝑡𝑒(𝑐, 𝑑).

𝑑𝑒𝑙𝑒𝑔𝑎𝑡𝑒(𝑑, 𝑒).

With the two clauses with 𝑡𝑟𝑢𝑠𝑡(𝑋,𝑁) in the head loaded into a Prolog environment together with

the above prototype, the query 𝑡𝑟𝑢𝑠𝑡(𝑒, 2). will return true, and 𝑡𝑟𝑢𝑠𝑡(𝑒, 1). will return false.

Formal Description and Analysis of Concepts (1)

Document name: Formal Description and Analysis of Concepts (1) Page: 8 of 38

Dissemination: PU Version: Version 1.0 Status: Final

 A Detailed Definition of TPL 4.2

At the core of such Horn-clause based languages are so-called facts, which are terms that can

be either true or false, e.g. 𝑡𝑟𝑢𝑠𝑡(𝑎) above. In contrast to Prolog, which is rather liberal on the

syntax of facts, we recommend for TPL typed first-order terms. Here we would distinguish

different kind of symbols:

 Fact symbols (like 𝑡𝑟𝑢𝑠𝑡, >): they represent something that can either be true or false.

Note we may have facts that have no argument, like "lifeisgood".

 Function symbols (like '-'): they are different from facts as they do not yield simply true or

false, but rather a value. We may control with a type system that they are not applied to

incompatible types.

 Constant symbols (like 0,1,a,b,c above) are a special case of function symbols with no

arguments.

 Variable symbols (like A,B,C,X,Y). Note that all identifiers that start with an upper-case

letter are variable symbols in Prolog.

Note that except a few built-in symbols, these symbols have no predefined meaning, but rather

the meaning comes only from the Horn clauses you specify.

We can build terms using function, constant, and variable symbols as expected, e.g.

signature(privkey(alice),X). A fact is then a fact symbol applied to a number of terms, e.g.

knows(s,signature(privkey(alice),X)). It is common to follow the convention

predicate(subject,object) when using facts, so that one can read it intuitively as "subject

predicate objects", i.e., in this example "[the server] s knows a signature of alice of message X".

A Horn clause has the form

 fact :- fact1, ..., factn.

(One may simply write "fact." in case n=0.)

It is to be read as "fact holds if all the facts fact1, ..., factn hold." where "if" is to be read as an

implication from right to left, i.e., fact <= fact1, ..., factn. For example

𝑡𝑟𝑢𝑠𝑡(𝑋) ∶ − 𝑙𝑜𝑎(𝑋, 𝐿), 𝐿 > 1.

𝑙𝑜𝑎(𝑋, 3) ∶ − 𝑞𝑢𝑎𝑙𝑖𝑡𝑦(𝑋, 𝑔𝑜𝑜𝑑).

𝑙𝑜𝑎(𝑎, 2).

𝑙𝑜𝑎(𝑏, 1).

𝑞𝑢𝑎𝑙𝑖𝑡𝑦(𝑐, 𝑔𝑜𝑜𝑑).

This is a simple example policy where we trust anybody with level of assurance higher than 1,

and a simple trust translation where we say that everybody who satisfies "quality" at level "good"

Formal Description and Analysis of Concepts (1)

Document name: Formal Description and Analysis of Concepts (1) Page: 9 of 38

Dissemination: PU Version: Version 1.0 Status: Final

has level of assurance 3. The next three facts encode a concrete example, of three people a,b,c

with levels of assurance 2, 1, and quality good. We can now query for instance trust(a). The

standard evaluation of Prolog is to find the first Horn clause with a conclusion that matches the

query. To illustrate that and the hierarchy of calls we make this as a list with sublists where each

bullet represents a query:

1. trust(a). The first (and only) matching clause is "trust(X) :- ...", meaning that we try to fulfill

this clause using X=a. Thus, we try to prove the new queries loa(a,L) and L>1.

o loa(a,L) Now the first matching clause is loa(X,3) :- quality(X,good). Thus we now

try:

 quality(a,good) This fails, we have no matching clause.

Since this attempt of proving loa(a,L) failed, we backtrack – meaning that we go back

to the last state in this procedure where multiple viable choices were available to us –

and see if any other clause would work. The only one that is left is loa(a,2). As this

one has no further conditions, we are done with this one under the match L=2.

o We have to still satisfy L>1, which given L=2 is also satisfied.

 Thus, trust(a) has succeeded.

With a similar derivation we see that the query trust(b) will fail. Note that a query may have

variables, i.e., we can query trust(Z) to mean that we want to know any entity Z that we trust. Let

us see the evaluation of that:

2. trust(Z). We match again the clause "trust(X) :- ..." and thus unify X=Z, giving us the new

query:

o loa(Z,L) To satisfy this, we can use the clause loa(X,3) :- quality(X,good), thus

unifying X=Z. Thus we try to prove

 quality(Z,good) This time, we can actually satisfy this, because there is the

clause quality(c,good). Thus unifying Z=c, we have succeed, and have

loa(c,3).

o L>1 is now also true since L=3>1.

Thus, trust(c) is true.

Note that this is not the only solution to this query. Prolog will always return the first solution it

finds and then ask if you want Prolog to search for further solutions. In this case, it will next find

the solution trust(a) and, if you then again choose to search for further solutions, it will fail. The

order in which solutions are found depends on the order in which you give the Horn clauses

(Prolog will try them in the order you specified them) and the same holds for the order of the

requirements on the right-hand side of a Horn clause.

 Some Further Examples 4.3

Let us illustrate by some further examples how specifications in this language look like:

Formal Description and Analysis of Concepts (1)

Document name: Formal Description and Analysis of Concepts (1) Page: 10 of 38

Dissemination: PU Version: Version 1.0 Status: Final

The above examples have defined e.g. that "quality" "good" translates into level of assurance 3.

We would like to formulate however, that everybody who satisfies assurance level 3, also

satisfies levels 1 and 2. We can do that as follows:

𝑙𝑜𝑎(𝑋,𝑁) ∶ − 𝑁 < 4, 𝑙𝑜𝑎(𝑋,𝑁 + 1).

Thus, to prove that somebody has assurance level N, it is sufficient to prove that they have

assurance level N+1. Note that we have to bound N+1 here to become at most 4 (or whatever is

the highest level of assurance) because otherwise Prolog may run into an infinite loop at this

point.

Another example is blacklisting. Here we need a form of negation, and that is often tricky. The

philosophy behind Horn clauses is to express things positively, i.e., ways to derive true facts

from other true facts. However, Prolog allows for a certain form of negation, for instance we can

modify the trust rule from our previous example as follows:

𝑡𝑟𝑢𝑠𝑡(𝑋) ∶ − 𝑙𝑜𝑎(𝑋, 𝐿), 𝐿 > 1, 𝑛𝑜𝑡(𝑏𝑙𝑎𝑐𝑘𝑙𝑖𝑠𝑡𝑒𝑑(𝑋)).

We can now simply represent blacklisted entities by enumerating them, e.g.

𝑏𝑙𝑎𝑐𝑘𝑙𝑖𝑠𝑡𝑒𝑑(𝑐).

The evaluation of the example query trust(Z) would now run just as before, and first find that

loa(Z,L).Z>1 could be derived with Z=c, L=3 and it remains to evaluate the query

not(blacklisted(c)). To that end, Prolog will try to prove the positive query blacklisted(c). This

succeeds, since c is indeed blacklisted, so the negative query not(blacklisted(c)) fails. At this

point Prolog backtracks and finds other solutions to satisfy loa(Z,L) and comes up with Z=a and

L=2. Now the query blacklisted(a) fails, and thus not(blacklisted(a)) succeeds, so Z=a is still a

solution.

Note that this is called negation by failure, i.e., not(fact) is true if we fail to derive fact. This is

contrary to classical logic, because in classical logic, if from A follows B then also from A and A'

follows B. In other words, learning additional information (like A') never limits what we can derive

(like B). Negation by failure violates this property: in the example, if we add to our Horn clauses

the fact "blacklisted(a)." then the derivation trust(a) is no longer possible.

For blacklists that is exactly the behavior we want, but in general, one has to be careful in the

use of negation, because it may easily violate one's intuition and produce hard to understand

and hard to debug specifications. Actually the only use should be for blacklist-type queries:

when the answer is by default positive, and only negative when explicitly stated so by some rule.

Note that this also prevents any "conflicting" definitions, i.e., where one policy says "yes" and the

other says "no" -- such a combination simply cannot be made.

Formal Description and Analysis of Concepts (1)

Document name: Formal Description and Analysis of Concepts (1) Page: 11 of 38

Dissemination: PU Version: Version 1.0 Status: Final

 Example: ISO/IEC FDIS 29115 4.4

Let us now give an example from the enrollment part of the ISO standard (that was earlier used
as an example for ER diagrams). Note that many aspects are outside of an automated
evaluation, e.g., checking the (physical) passport of a person who showed in person for
enrollment. We assume however that all such facts can be stated about a person in a list of Horn
clauses and then handed into the reasoning machinery for evaluation. We are describing now
this evaluation as clauses about these facts.

There are in fact many ways to do this, but we first would like to assume that all the parameters
and inputs of an enrollment session are represented in some way by a term (in the end, a
structured document, not unlike an XML tree). We do not have to really worry about this
structure now, we just formulate rules that process one such given term X, for instance:

loa1(X) :- uniq(X).
loa2(X) :- loa1(X), l2req(X).
loa3(X) :- loa2(X), l3req(X).
loa4(X) :- loa3(X), l4req(X).

This expresses, that an enrollment application satisfies level of assurance 1 if some predicate
uniq is satisfied. We did not specify the predicate "uniq" but it just represents the requirement
that the identity of the person to be enrolled is unique. In this way we should simply note all
those requirements we cannot formalize or do not want to formalize in this process -- they simply
remain abstract requirements. For all other levels of assurance, they are defined as achieving
the next lower level and some additional requirements. For these we have facts l2req,...,l4req
that we do specify in more detail by Horn clauses:

l2req(X) :-
 person(X),
 inPerson(X),
 idDocument(X,D).

Here, person, inPerson and idDocument are again facts we do not specify in more detail, but
they just abstractly refer to the condition that the entity to be enrolled is a person, showed up in
person, and has a document D to prove its identity. We may have as well just written here
"idDocument(X)" without the variable D, because it could be part of the entire application term
that we refer to with "X". However, in other clauses below we want to refer to the document that
is used to prove the identity. For that end, we make it a parameter of this fact, so we can easily
refer to it when we need to. There are other clauses to satisfy level 2 requirements, namely, in
the cases of not showing up in person or not being a person in the first place:
l2req(X) :-
 person(X),
 notInPerson(X),
 idDocumentPossession(X).
l2req(X) :-
 nonPerson(X),
 autoritativeInformationRecorded(X).

Formal Description and Analysis of Concepts (1)

Document name: Formal Description and Analysis of Concepts (1) Page: 12 of 38

Dissemination: PU Version: Version 1.0 Status: Final

 At the level 3 requirements, we actually now refer to the ID-document that the applicant has

shown because the requirement is to check this document with the records of the original issuer
who once produced this document. Again this is outside the automated systems, but we can still
describe it to some extent, namely that D is the document used to prove the identity and that
exactly that document should be checked with the source:

l3req(X) :-
 person(X),
 inPersonProofed(X),
 contactInformationVerified(X),
 idDocument(X,D),
 checkedWithSource(D),
 personalInformationCorroborated(X),
 verifiedCredentialClaim(X).

A similar modeling method we use here is to extract aspects of the application, e.g., when the
applicant does not show up in person, then they must have shown the possession of a level-3
certificate:

l3req(X) :-
 person(X),
 notInPersonProofed(X),
 hasCredential(X,C), loa(C,L), L >= 3,
 verifiedCredentialClaim(X).

Here, to extract that certificate from the application we have introduced another fact
"hasCredential(X,C)" that we also do not specify concretely, and from which we extract the level
of assurance with another fact "loa(C,L)". This allows us to formulate the rules without specifying
the precise structure of the terms X (the entire application) and C (the concrete credential). The
advantage of this modeling is that it does not depend on a particular format of applications or
credentials. In fact, this specification is compatible with any credential technology if only you can
specify a predicate loa(C,L) on credentials that extracts the level of assurance embedded in
such a credential and produces failure when the credential in question does not have this
concept of assurance levels. Quite similarly we can now formulate that non-person entities need
to apply with a level 3 credential that was issued by a human:

l3req(X) :-
 nonPersonEntity(X),
 trustedHardwareUsage(X),
 hasCredential(X,C), loa(C,L), L >= 3, issuer(X,I). person(I).

 Formal Semantics 4.5

While the previous sections have relied on the readers intuition for a definition of the language,

we here want to briefly sketch two ways to formally define the meaning of the language. This is

only a sketch since the semantics of Prolog has been described in detail (Programming

languages, 1995).

Formal Description and Analysis of Concepts (1)

Document name: Formal Description and Analysis of Concepts (1) Page: 13 of 38

Dissemination: PU Version: Version 1.0 Status: Final

The first way is that of an interpreter. Let us call a query any conjunction of facts (like the right-

hand side of a clause). Given a set of Horn clauses and a query, we first rename the variables of

the Horn clauses so that they are disjoint from those of the query.

 We pick the first predicate p from the query and check the first Horn clause of the form q

:- p1,...,pn such that p and q have a unifier, i.e., a substitution of the variables that

makes the terms equal. For the free algebra (i.e., not taking into account any algebraic

properties of function symbols) there is always a most general unifier, i.e., so that every

other unifier is an instance of the most general unifier.

 Let be the most general unifier of p and q, then we replace p in the query by

p1,...,pn and apply to the entire query.

 If n=0 and there are no further predicates in the query, we already have a solution.

 Otherwise, we try to recursively solve this query with the Horn clauses.

 If we reach a point where no conclusion of a Horn clause unifies with the first query, then

there is no solution for that query.

This describes the algorithm for finding the first solution for a query, but it can be easily extended

to one that lists all solutions, namely each evaluation gives as a result not one, but a list of

solutions. Note also that this procedure does not necessarily terminate. For instance consider

 𝑝(𝑋):− 𝑝(𝑓(𝑋)).

 𝑝(0).

The query 𝑝(𝑌) has now a simple solution, namely 𝑌 = 0, but since the interpreter will first try

the first rule, it will rather try to derive 𝑝(𝑓(𝑌)), 𝑝(𝑓(𝑓(𝑌))), . .. and never actually reach this

simple solution. However note that any language that is powerful enough to express every

possible algorithm (i.e., that is Turing complete) necessarily has means for formulating such

infinite evaluations. We can for most cases restrict ourselves to the Datalog fragment of Prolog

that does not have any function symbols; that is indeed always terminating, but has therefore

also less expressive power.

A more logical view of the semantics can be obtained if we consider the Horn clauses as logical

formulas of first-order logic, where :- is (logical implication from right to left), the comma is

logical conjunction and all variables of every Horn clause are universally quantified, e.g., p(X,Y)

:- q(X) becomes

∀𝑋, 𝑌. 𝑞(𝑋) ⟹ 𝑝(𝑋, 𝑌).

Then, given a set of Horn clauses H and a query 𝑝1, . . . 𝑝𝑛, the solutions are those substitutions

 of the variables in 𝑝1, . . . , 𝑝𝑛 such that

𝐻 ⊢ (𝑝1, . . . 𝑝𝑛)

where ⊢ means provability (which is equivalent to logical implication in first-order logic). The nice

advantage of this logical formulation is that it is independent of the procedural aspects like the

order of the clauses or termination issues.

Formal Description and Analysis of Concepts (1)

Document name: Formal Description and Analysis of Concepts (1) Page: 14 of 38

Dissemination: PU Version: Version 1.0 Status: Final

There are two extensions of this basic Prolog/TPL language that need to be considered.

 First, we may also use built-in datatypes and functions, like the binary operator + and the

binary predicate >= on integers or floats. Prolog interpreters typically require here restrictions

so that at any stage the operators can be applied to concrete terms; from the logical point of

view it is quite difficult to integrate this, since already natural number arithmetic is beyond

first-order logic. Hinrichs and Gennesereth suggest here slightly different basis called

Herbrand logic (Hinrichs & Genesereth, 2006).

 The second complication is the use of not in queries and Horn clauses -- that are than

actually no longer Horn clauses. This is somewhat at odds with classical logic. In a nutshell,

when the interpreter encounters a query that starts with 𝑛𝑜𝑡(𝑝) then it should first

(recursively) try to prove the query 𝑝. If that fails (no solution under which p is true), then the

query not(p) counts as satisfied and the evaluation continues. This is ideal for blacklisting

(see example above), but should be used only for this special purpose, because it destroys

the monotonicity property of classical logic, namely that adding knowledge (Horn clauses)

can only increase (but never decrease) the set of derivable consequences -- this is no longer

true when not is involved. Model-theoretic or proof-theoretic formalizations of this

phenomenon are pretty ugly.

Formal Description and Analysis of Concepts (1)

Document name: Formal Description and Analysis of Concepts (1) Page: 15 of 38

Dissemination: PU Version: Version 1.0 Status: Final

5. Basic Scenarios in TPL

The Trust Policy Language that we propose is capable of expressing both the policy itself and

the operational aspects (like queries to a DNS server). To illustrate that we give here a

formalization of three basic scenarios.

 Boolean Trust Scheme without Translation 5.1

This is the information flow and scenario first described in Section 12.2.1 of the architecture

deliverable D2.14. We formalize it as a predicate of a text Text being supposedly signed by a

Signer, these two parameters would normally be input to a query; as comments we have the

step numbers from the information flow diagram above:

trustPublicationScenario(Text,Signer) :-

 % Steps 1.-5. checking document and signatures (local):

 document(signature(Text,PkSig)),

 certificate(SigCert),

 issuer(SigCert,Issuer),

 bearer(SigCert,Signer),

 pubkey(SigCert,PkSig),

 issuerkey(SigCert,PkIss),

 altIssuerName(SigCert,TrustMemClaim),

 % Step 6.-8. Query DNS

 queryBTS(TrustMemClaim,Issuer,PkIss),

 % Step 9. Check Trust policy

 scheme(TrustMemClaim,TrustScheme),

 trust(TrustScheme).

Here, the predicates document and certificate refer to facts that should be part of the

current "knowledge base", i.e., that are fed into the automated trust verifier initially. The

predicates issuer and the like are for extracting aspects of the certificate (e.g., who is the

issuer of the certificate). This is done with such predicates in order to formulate it in a general

way that is independent of a concrete credential format. To support a new credential format, one

thus has to just define these predicates for it. Thus these part of the clause represent that we

check the existing credentials and extract the Trust Membership Claim from it, which is the URL

we then use in the DNS query -- that is then expressed with the predicate

queryBTS(TrustMemClaim,Issuer,PkIss). Note that conceptually, TPL (or Prolog) do

not have a notion of input or ouput in these predicates. This is because either can be left a

variable in a query and we then evaluate to find the possible solutions for these variables to

make the query true. The query predicate would support in fact three different options for this:

1. Only the URL (TrustMemClaim) is the input, and the result of the query is the entire

trust list with their certificates.

2. The URL and the Issuer name, and output is the public key if the issuer is in the trust list.

3. All three -- URL, Issuer name and public key -- are input, and the query only can succeed

(if the issuer is part of the trust list and has the given public key) or fail.

Formal Description and Analysis of Concepts (1)

Document name: Formal Description and Analysis of Concepts (1) Page: 16 of 38

Dissemination: PU Version: Version 1.0 Status: Final

Note that this abstracts from the precise mechanisms with RR-records and verifying the

certificate chain to the top-level domain. Finally, we have to check that we even trust the given

trust scheme. Usually the trust scheme name may not be identical with the URL of the

TrustMemClaim, therefore we use an additional predicate scheme to extract the trust scheme

name. Then we finally verify whether the TrustScheme actually satisfies our trust policy which

can be in the example scenario simply an enumeration of trusted schemes e.g.:

trust(["TrustScheme","signature","trust","ec","europa","eu"]).

 Ordinal Trust Scheme without Translation 5.2

This is the second information flow and scenario described in Section 12.2.1. Here in addition,

we have to check an attribute, in the example that the method of identity proofing of the said

certificate was "in person". To that end, we only modify the query predicate to return a set of

Attributes as a result:

ordinalTrustPolicyScenario(Text,Signer) :-

 % Steps 1.-5. checking document and signatures (local):

 document(signature(Text,PkSig)),

 certificate(SigCert),

 issuer(SigCert,Issuer),

 bearer(SigCert,Signer),

 pubkey(SigCert,PkSig),

 issuerkey(SigCert,PkIss),

 altIssuerName(SigCert,TrustMemClaim),

 % Step 6.-8. Query DNS

 queryOTS(TrustMemClaim,Issuer,PkIss,Attrib),

 attribute(Attrib,identityProofing,inPerson),

 % Step 9.-10. Check Trust policy

 scheme(TrustMemClaim,TrustScheme),

 trust(TrustScheme).

Here the predicate attribute is used to extract attributes from the (potentially complex) set of

attributes that the query returns. This is again done to make this specification independent of the

concrete representation of the attributes (like a list of pairs of attribute name and attribute value),

basically only requiring that there is an attribute called "identityProofing" and that its value is

"inPerson". Similar things we can do with all kinds of attributes, including level of assurance.

One may argue that this is actually mixing of a procedure (checking a document and obtaining

certificates) with the actual trust policy (who is trusted, which attributes are required). Our trust

policy language of course allows us in a nice way to separate these concerns, as we describe in

more detail in the next section.

 Trust Translation Scheme Scenario 5.3

As a third example we look at the Boolean Trust Translation Scheme Scenario from Section 12.3

of D2.14. This is like the first scenario, but where the trust scheme is actually foreign (e.g. a

Swiss trust scheme) and needs to be translation (e.g. into European qualified signature). The

Formal Description and Analysis of Concepts (1)

Document name: Formal Description and Analysis of Concepts (1) Page: 17 of 38

Dissemination: PU Version: Version 1.0 Status: Final

beginning is similar again to the Boolean trust scheme, and all the difference lies in the predicate

trustWithTranslation that allows to accept the trust in this scheme if it is either directly

trusted or can be translated into a trusted one:

trustTranslationScenario(Text,Signer) :-

 % Steps 1.-5. checking document and signatures (local):

 document(signature(Text,PkSig)),

 certificate(SigCert),

 issuer(SigCert,Issuer),

 bearer(SigCert,Signer),

 pubkey(SigCert,PkSig),

 issuerkey(SigCert,PkIss),

 altIssuerName(SigCert,TrustMemClaim),

 % Step 6.-8. Query DNS

 queryBTS(TrustMemClaim,Issuer,PkIss),

 % Step 9.-15. Check Trust policy

 scheme(TrustMemClaim,TrustScheme),

 trustWithTranslation(TrustScheme).

Here, the trustWithTranslation is defined by two clauses, namely if it is directly a trusted

scheme, or otherwise we check if it can be translated into a scheme that we already trust in:

trustWithTranslation(TrustScheme) :- trust(TrustScheme).

trustWithTranslation(ForeignTrustScheme) :-

 trust(TrustScheme),

 translation(ForeignTrustScheme,TrustScheme).

Here translation is a predicate that invokes again a query similar to a query for native

schemes as we had them before:

translation(ForeignTrustScheme,TrustScheme) :-

 encoding(ForeignTrustScheme,TrustScheme,URL),

 queryBTSTranslationScheme(URL).

Here, we first need to generate a URL out of the foreign trust scheme and the one we want to

translate to; this is done by the predicate encoding for our example, the foreign trust scheme is

["admin","ch"], the (native) trust scheme is ["signature","trust","eu"] and

encoding would yield the URL

["dingsbums__admin__ch","Translation","signature","trust","eu"].

Formal Description and Analysis of Concepts (1)

Document name: Formal Description and Analysis of Concepts (1) Page: 18 of 38

Dissemination: PU Version: Version 1.0 Status: Final

6. Separating Policies from Procedures

A drawback in the examples of the previous section consists in the mixture of procedural

aspects (like querying servers, checking documents) with the actual policy. It is beneficial to

separate them, so that the procedure of checking a transaction will always be the same and

simply invoke a check of the policy. In case of trust translation, this policy may itself trigger a

procedure. Thus the policy (and the translation schemes) can easily be changed without

changing the procedure that works on them, and vice-versa.

Here is now the more abstract procedure for checking a document:

checkDocument(Text,Signer,TrustScheme,Attributes) :-

 document(signature(Text,PkSig)),

 certificate(SigCert),

 issuer(SigCert,Issuer),

 bearer(SigCert,Signer),

 pubkey(SigCert,PkSig),

 issuerkey(SigCert,PkIss),

 altIssuerName(SigCert,TrustMemClaim),

 query(TrustMemClaim,Issuer,PkIss,Attributes),

 scheme(TrustMemClaim,TrustScheme).

In contrast to the formalization of the previous section, we use a unified query predicate. Here

query(TrustMemClaim,Issuer,PkIss,Attributes) represents the DNS query at URL

TrustMemClaim checking that Issuer belongs to the trust list, indeed has public key PkIss

and attributes Attributes. The check procedure simply returns the obtained TrustScheme

and Attributes and we can thus formulate the policy with respect to these two. For instance

the simplemost case was the Boolean trust scheme where the policy would simply be:

qualifiedSig(["TrustScheme","signature","trust"," europa","eu"]).

trustpolicy1(TP,Attrib) :- qualifiedSignature(TP).

scenario1(Text,Signer) :-

 checkDocument(Text,Signer,TP,A),

 trustpolicy1(TP,A).

The predicate scenario1 then binds procedure and policy together (we omit the similar

predicate for the next examples). The second trust policy is additionally requiring in-person

proofing:

trustpolicy2(TP,Attrib) :-

 qualifiedSig(TP),

 attribute(Attrib,identityProofing,inPerson).

Finally the trust translation example allows for a policy that has translation in there that (when

necessary) triggers a procedure for obtaining the translation:

trustpolicy3(TP,Attrib)

Formal Description and Analysis of Concepts (1)

Document name: Formal Description and Analysis of Concepts (1) Page: 19 of 38

Dissemination: PU Version: Version 1.0 Status: Final

 :- qualifiedSig(TP).

trustpolicy3(ForeignTP,Attrib)

 :- qualifiedSignature(TP),translation(ForeignTP,TP).

Here, translation triggers the a query to the translation URL that is built from encoding the

foreign trust policy into a subdomain of the local one:

translation(FTP,LTP) :-

 encode(FTP,LTP,URL),

 query(URL,_,_,Attributes),

 attribute(Attributes,recipe,"equivalent").

Formal Description and Analysis of Concepts (1)

Document name: Formal Description and Analysis of Concepts (1) Page: 20 of 38

Dissemination: PU Version: Version 1.0 Status: Final

7. Formats

The previous section has not talked explicitly about the concrete data formats that the

certificates or resource records from the DNS servers have. This is of course a key point in

getting from a policy to a running implementation. The point is that the policy and the TPL

language work on the level of abstract syntax, where we do not think about the concrete

formatting or representation of the information, but only describe on a high-level what

information must be present and what its logical meaning is.

To obtain an actual implementation, however, we must make the link to the concrete syntax, i.e.,

the concrete bitstrings that are being transmitted. This section outlines an idea for extending

TPL with a new module that establishes this link between the abstract and concrete syntax. We

emphasize that we only introduce the idea for the module – we do not give specific descriptions

of how it should look. That is left for a future iteration of this deliverable.

We thus have a parser that reads the bitstring in concrete syntax and extracts the abstract

syntax, and a pretty printer that produces from the abstract syntax the concrete syntax again.

To make this connection, we use an idea from the field of specifying security protocols. In this

way we combine the advantages of concrete and abstract syntax: from concrete syntax that we

are completely precise on the used message formats and from the abstract syntax we avoiding

of cluttering up the entire protocol description with complicated but largely irrelevant details.

As a real-world example, let us consider the first message of the TLS Handshake protocol. In a

high-level description we would like to simply write a term like this:

TLSclientHello(T, R, S, Cipher, Comp)

The actual message on the string level would be:

'20' '3' '3' [['1' '3' '3' T R [S]
1
[Cipher]

2
 [Comp]

1
]

3
]

2

where 'n' means a byte of value n and [m]k means that m is a message of a variable length, and

this length is given as a k-byte field before m. (In contrast, T and R have a fixed size.)

The idea is now that abstract function symbols like TLSclientHello are a sound abstraction

of their concrete byte-level format if all formats we use are only fulfilling some reasonable

properties (Mödersheim & Katsoris, 2014). With sound abstraction we mean:

 If the intruder can attack a system on the low byte level, then there is a similar attack on

the abstract function level, i.e. if the abstract system is secure, then also the concrete

system is. This means it is safe for us to just think in terms of the abstract level, in

particular in modeling and verification/security proofs.

The reasonable properties that this soundness result requires are:

Formal Description and Analysis of Concepts (1)

Document name: Formal Description and Analysis of Concepts (1) Page: 21 of 38

Dissemination: PU Version: Version 1.0 Status: Final

 Each format is unambiguous: if 𝑓(𝑡1, . . . , 𝑡𝑛) = 𝑓(𝑠1, . . . , 𝑠𝑛) then 𝑡1 = 𝑠1, . . . 𝑡𝑛 = 𝑠𝑛, i.e.

there is no byte string that can be read in more than one way as format 𝑓.

 The formats are disjoint: if 𝑓1(𝑡1 , . . . , 𝑡𝑛) = 𝑓2(𝑠1, . . . , 𝑠𝑚) then 𝑓1 = 𝑓2 (and thus 𝑛 = 𝑚

and 𝑡1 = 𝑠1, . . . , 𝑡𝑛 = 𝑠𝑛 by unambiguity), i.e., no byte string can be parsed as more than

one format.

Of course, implementations need two modules that deal with concrete syntax:

 Parser: reading a concrete string in concrete syntax and obtain a parse tree -- in abstract

syntax.

 Pretty Printer/Code Generator: given a piece of code in abstract syntax, generate the

string that corresponds to the concrete syntax.

Thus, as soon as we have these two modules for each of the message formats, the rest of the

implementation does not need to “think” in terms of the low-level string representation anymore.

Let us consider one more example: many protocols exchange information using some XML-

based formats. XML is itself a construction that allows arbitrary hierarchical structures and

ensures unambiguity and disjointness, and will return the parsing result in abstract syntax, i.e., in

that tree we have no longer any concrete syntax characters like angle brackets and slashes of

an expression like <dingsbums>...</dingsbums>, but we rather see only a tree node of

entity dingsbums and what its children are. Still, it is often nice to put yet another abstraction

layer on top of such an XML format, so one does not have to browse such a XML parse tree but

has a more immediate representation of the data that is suitable for ones purposes.

This also shows one thing: when using the XML-libraries for parsing/pretty printing of XML-

formats, one can avoid many of the usual implementation problems “by construction”, such as

buffer overflows: assuming your XML-library is well-written, you do not need to write a parser

yourself by hand. More generally, one of the ideas behind formats is that one should have a

library of parsers/pretty printers, one for each format, and then use them, similar to a library of

crypto functions. The point is in both cases that not every programmer needs to repeat all the

common mistakes, but just use the “best” solution for a subtle programming problem.

There is some preliminary work on automatically generating said libraries of formats from

description of formats supporting:

 XML-based formats.

 The ASN-style format description seen in the TLS example above.

Both of these are prototype implementations that supports formats with a fixed number of

elements (Mejborn, 2016). Related available research work and implementations:

 The paper on formats (Mödersheim & Katsoris, 2014).

 The language SPS (formerly APS) developed by Almousa et al. during the FutureID

project. A language based on Alice-and-Bob notation that can both generate formal

Formal Description and Analysis of Concepts (1)

Document name: Formal Description and Analysis of Concepts (1) Page: 22 of 38

Dissemination: PU Version: Version 1.0 Status: Final

models to be used in protocol verification tools and generate implementations in

JavaScript (a requirement from FutureID) using the formats (Almousa, Mödersheim, &

Viganò, Alice and Bob: Reconciling Formal Models and Implementation, 2015).

 A first version of the language was described in the FutureID deliverable D42.3

(FutureID-Project, D42.3 - APS Definition Functions, 2014), and several specifications of

protocols as found in D42.8 (FutureID-Project, D42.8 APS Files for Selected

Authentication Protocols, 2015).

 The noted BSc thesis (Mejborn, 2016).

 Formats are also used as a basis for compositionality and the automated

compositionality checker APCC, see (Almousa, Mödersheim, Modesti, & Viganò, 2015).

One frequently used TPL-predicate that serves exactly to abstract away from dealing with

specific formats is the extract predicate. See the following section for a more elaborate example

that uses it. The predicate takes three arguments. The first is some collection of data, like a

certificate, the second is the name of some data item in that collection, and the third is the value

of that item.

For example, extract(Certificate, name, Name) asserts that the name-property in the

Certificate is Name. Assuming an XML-style format, if Certificate is equal to

<cert><name>Jane</name>…</cert>, then Name should be Jane, because Jane is the value

corresponding to the property name in the Certificate.

Formal Description and Analysis of Concepts (1)

Document name: Formal Description and Analysis of Concepts (1) Page: 23 of 38

Dissemination: PU Version: Version 1.0 Status: Final

8. A Health Care Scenario

Description

A doctor is about to treat a patient, and wants to verify that the patient is properly insured. The

verification procedure should be largely automatic. It may rely on a policy that is predefined by

the doctor, and data delivered to the doctor by the patient.

Making this an analogy to the standard LIGHTest scenarios would see the decision of the doctor

– of whether to accept the claim of insurance of the patient – as a trust decision. Further, the

transfer of data from the patient would be seen as the transaction of a document.

Goals

The doctor wants to specify a policy that accepts the patient as properly insured when both of

the following requirements are met.

 The patient has health insurance. Enforcing this requires some mechanism to detect an

attempt by the patient to lie about having insurance. Even a patient that actually has health

insurance might try to lie – claiming to have a better provider or a better insurance plan than

what is actually the case. To simplify this scenario, we assume that each health insurance

provider offers exactly one insurance plan. However, we still need to be sure that a patient

cannot convince the doctor that the insurance comes from a different provider.

 The patient’s health insurance provider is approved. The point is to reject insurance

providers that are not be expected to pay out any money. These can be bogus providers –

made up just to pass this check – or providers that have become blacklisted, e.g. due to

bankruptcy. To decide if a provider should be approved, the doctor consults a list of

approved health insurance providers.

Assumptions

1. The patient has a health insurance card that has been issued to him/her by a health

insurance provider – the issuer. The doctor scans the card and gets the data needed to

perform the verification.

The data is cryptographically signed by the issuer – so we call it a certificate – establishing a

link between the patient and the issuer. This allows checking the first requirement above;

that the patient indeed has health insurance, and that the provider is the one the patient

claims.

In practice, the certificate will contain more data than necessary for specifying this scenario –

such as the name of the patient. In the following the certificate is assumed to contain at least

the following data:

 issuer: The name of the health insurance provider that issued the card.

 country: The country in which the card is valid.

Formal Description and Analysis of Concepts (1)

Document name: Formal Description and Analysis of Concepts (1) Page: 24 of 38

Dissemination: PU Version: Version 1.0 Status: Final

 pub_key: The public key that corresponds to the private key that the health insurance

provider used to sign the data.

 trust_list: The name of the entry in the list of approved health insurance providers (see

below) that corresponds to the issuer.

2. A list of approved health insurance providers includes the health insurance provider that

issued the patient’s health insurance card. This fact satisfies the second requirement for the

patient; that the insurance provider is approved.

The list is hosted at a fixed, trusted location, healthcare.trust.eu, analogously to how

trust lists and schemes are hosted in other scenarios.

Indeed, such a list – or more likely lists from several countries – is comparable to the EU

Trusted Lists. In fact, one could imagine including health insurance providers in the trusted

lists among those not qualified according to Regulation (EU) No 910/2014.

3. It is possible to query [trust_list].healthcare.trust.eu, to get a record of the approved

information about the issuer, where [trust_list] must be replaced by the trust_list-attribute of

the certificate. The record contains at least the following data:

 entity: The name of the health insurance provider in question.

 country: The country in which cards issued by the insurance provider are valid.

 pub_key: The public key of the insurance provider.

Policy

The policy is a specification of what certificates are acceptable proofs of health insurance. We

assume that it is to be executed by some application, the policy-executor. This application is

analogous to the ATV.

Health Insurance - Natural Language Policy

The certificate C is proof of health insurance if (all of the below, in the given order):

- C has the format healthcare_cert_format, which is some certificate-format that the policy-

executor can understand.

- The trust_list attribute of C is present. Let the corresponding value be called SubDomain.

- A URL is formed by combining SubDomain with healthcare.trust.eu. The URL is queried,

and the result of the query is called TrustListEntry in the following.

- TrustListEntry has the format healthcare_entry, which is some format for such a data record

that the policy-executor can understand.

- The issuer attribute of C is present. Let the corresponding value be called InsuranceOrg.

- The entity attribute of TrustListEntry is present. The corresponding value is equal to InsuranceOrg.

- The country attribute of C is present. Let the corresponding value be called Country.

- The country attribute of TrustListEntry is present. The corresponding value is equal to Country.

- The pub_key attribute of TrustListEntry is present. Let the corresponding value be called PK.

- The digital signature on C is by the private key corresponding to the public key PK.

Formal Description and Analysis of Concepts (1)

Document name: Formal Description and Analysis of Concepts (1) Page: 25 of 38

Dissemination: PU Version: Version 1.0 Status: Final

Here we express with two variants the same basic policy. The first variant uses natural language

to express the policy, and the second uses TPL.

Notice that the natural language policy is essentially a horn-clause (except that it is not first-

order logic), in the sense that is comprises exactly one conclusion whose premise is a

conjunction of statements. This makes it straight forward to translate it into TPL, and the TPL-

policy below has a very close correspondence with its natural language counterpart.

Also noteworthy is the use of the word “if” in the first line. The meaning here is exactly the

meaning of “:-“ in TPL.

Health Insurance - TPL Policy

valid_health_insurance(Certificate) :-

 extract(Certificate, format, healthcare_cert_format),

 extract(Certificate, trust_list, SubDomain),

 lookup(SubDomain, "healthcare.trust.eu", TrustListEntry),

 extract(TrustListEntry, format, healthcare_entry),

 extract(Certificate, issuer, InsuranceOrg),

 extract(TrustListEntry, entity, InsuranceOrg),

 extract(Certificate, country, Country),

 extract(TrustListEntry, country, Country),

 extract(TrustListEntry, pub_key, PK),

 verify_signature(Certificate, PK).

lookup (SD,TrustList,TrustListEntry) :-

 encode(SD, TrustList, URL),

 query(URL, TrustListEntry).

Formal Description and Analysis of Concepts (1)

Document name: Formal Description and Analysis of Concepts (1) Page: 26 of 38

Dissemination: PU Version: Version 1.0 Status: Final

9. Designing Translation Policies

In LIGHTest, translation refers to the process of the Automatic Trust Verifier (ATV) when it

encounters a scheme that is not directly trusted. The ATV queries the Trust Translation Authority

(TTA) for a Trust Translation List (TTL), to see if there is a translation from a trusted scheme to

the one that is not trusted.

The information in the TTL – what schemes and Levels of Assurance (LoAs) translate to what –

we see as a translation policy. We have already discussed translation policies before. In this

chapter we take a step back and discuss how to obtain such translation policies, i.e., what

design considerations are involved. We note two important things here:

 The design of translation policies itself is not an objective of LIGHTest. It is however

possible to assist on the design with the technologies that the project designs, as we now

show. Also, this discussion is in our opinion helpful to reflect on the concepts and get a

clear separation of what the project does and does not do.

 The design of a translation policy is in general not a purely technical issue that logically

follows from some formal specification. First, many considerations in the design could be

referring to concepts that are not entirely formalized or need to be legally interpreted,

e.g., what it means to be a senior citizen. Second, there may be political considerations,

e.g. bilateral agreements for the translation with certain legal guarantees. Thus, what our

project can provide here is only a suggestion for a translation policy.

 An Example 9.1

As a running example in this chapter, we use an eIDAS-scheme with three LoAs – Low,

Substantial, and High – and an ISO29115-scheme with four – 1, 2, 3, and 4. In this case, a

translation policy can be represented as a table, stating what LoA in one scheme translates to

what LoA in the other scheme.

As an example, the table below gives a policy that

 a LoA of 1 or 2 translates to a Low LoA,

 a LoA of 3 translates to a Substantial LoA,

 and a LoA of 4 translates to a High LoA.

Translate From 1, 2 3 4

Translate To Low Substantial High

Such a translation is straightfoward to specify in TPL, for instance:

iso2eidas(iso_loa1,eidas_low).

Formal Description and Analysis of Concepts (1)

Document name: Formal Description and Analysis of Concepts (1) Page: 27 of 38

Dissemination: PU Version: Version 1.0 Status: Final

iso2eidas(iso_loa2,eidas_low).

iso2eidas(iso_loa3,eidas_substantial).

iso2eidas(iso_loa4,eidas_high).

More complicated translations may be then expressed between schemes with several attributes.

Mind that this translation has a direction, namely from ISO to eIDAS, i.e., it is not supposed to be

applied for translating from eIDAS to ISO (since that has not even a unique answer in every

case). TPL specification allow however to be evaluated in both directions, i.e., we can query

what ISO-levels would be translated eIDAS level low. The query:

 iso2eidas(X,eidas_low).

would yield the answers X=iso_loa1 and X=iso_loa2.

In fact, the translation in the other direction could be entirely different. For example, a

Substantial LoA in the eIDAS-scheme may not be enough to get a LoA of 3 in the ISO29115-

scheme.

 Designing Translations: the Rationale behind a Policy 9.2

An important point is now that the translation only depends on information is present in the

credential, in the example the level of assurance information in the given ISO credential. The

reason why ISO level 2 is translated to eIDAS low and not eIDAS substantial is not

formalized in this policy -- and it should not be the concern of the ATV for instance. Rather, this

is a concern in the design of the translation policy that may be based on all aspects of the two

credential schemes, in particular the issuing process. This is because issuing depends on

properties of the entity that the credential is being issued for, e.g., whether it is a natural person

and whether this person showed in person to the issuing. Such properties may have an

influence on the assurance level that this person will obtain, but it may not be an attribute of the

credential, so from the issued credential it is not (directly) visible whether it is a person who

showed up in person. Thus, the policy cannot (directly) refer to such a property that is not

reflected in the credential. It may however, be a design consideration for the translation policy. In

a nutshell, the rationale could be:

 Credential CA in scheme A should be translated to credential CB in scheme B, if

every entity who receives credential CA in scheme A would get in scheme B the credential

CB or better.

This rationale requires several notions:

 There is a total ordering on the credentials of scheme B, expressing what is better. (This

should refer to only the ordinal aspects of credentials, not on other information like bearer

name etc.)

Formal Description and Analysis of Concepts (1)

Document name: Formal Description and Analysis of Concepts (1) Page: 28 of 38

Dissemination: PU Version: Version 1.0 Status: Final

 It requires that all properties of the issuing process of the credentials are sufficiently

formalized and comparable between the two schemes. In fact, this is a question

(partially) answered by the work on vocabularies and description of credential schemes.

We now show how to represent the above rationale in LIGHTest for any trust scheme that is

sufficiently formalized in TPL.

 The Issuing Process 9.3

Comparing credentials can be done by considering the details of issuance. Two schemes may

have similar requirements for issuing credentials, and based on that decide to recognize the

other scheme in a translation policy.

To talk about what requirements are met, we introduce the concept of a scenario as the input to

the issuing process. A scenario assigns values to all properties relevant to the issuing process.

A scheme can then decide to recognize a credential from a different scheme by evaluating all

scenarios that could lead to that credential being issued.

In the following we see a scheme as a tuple 𝑠𝐴 = (𝐴, 𝑖𝑠𝑠𝑢𝑒𝐴), where A is the set of all credentials

that sA can issue, and issueA is a function, S→ A, that maps a scenario to a credential.

As an example, to issue a credential to a person, a scheme may require that person to show up

in person and present a passport. In this case, the scenario defines the Boolean in_person- and

passport-properties to indicate whether those requirements are met.

 Translation 9.4

This section discusses how to specify translation from a scheme sA to another sB. The

translation is a function, fAB: A→B, from credentials of the first scheme to credentials of the

second scheme. The idea is to express fAB in general, so that the same definition can be reused

every time a new translation policy is to be defined.

Example – Issuing

 𝑖𝑠𝑠𝑢𝑒𝐴(𝑖𝑛_𝑝𝑒𝑟𝑠𝑜𝑛, 𝑝𝑎𝑠𝑠𝑝𝑜𝑟𝑡) =
LoA High if 𝑖𝑛_𝑝𝑒𝑟𝑠𝑜𝑛 = 𝑡 ∧ 𝑝𝑎𝑠𝑠𝑝𝑜𝑟𝑡 = 𝑡

LoA Low otherwise if 𝑖𝑛_𝑝𝑒𝑟𝑠𝑜𝑛 = 𝑡
⊥ otherwise

The function issueA of the scheme sA is defined as follows.

This sA issues a certificate with a High LoA if both properties are true and otherwise it issues a Low

LoA if in_person is true. If none of these requirements are met, sA issues no certificate, indicated with

⊥.

Formal Description and Analysis of Concepts (1)

Document name: Formal Description and Analysis of Concepts (1) Page: 29 of 38

Dissemination: PU Version: Version 1.0 Status: Final

One application opportunity is a tool that will automatically produce (or recommend) a translation

policy. The only requirement would be to define the two input schemes in a compatible way by

defining the issue-functions.

The tool is out of the scope of LIGHTest to provide. We mention it here as a possible use-case

worth considering.

The idea is to define fAB so that the credential it outputs is determined by the set of scenarios

that the input-credential can be issued from. The problem is that these scenarios may

correspond to more than one output-credential in the output-scheme.

Scheme sB Scheme sA

1 2 3 4 L S H

Scenarios

f
AB

issue
A

 issue
B

s
1

s
2

s
3

Figure 1 Translation

Formal Description and Analysis of Concepts (1)

Document name: Formal Description and Analysis of Concepts (1) Page: 30 of 38

Dissemination: PU Version: Version 1.0 Status: Final

The figure above gives an example. In it, a credential with the LoA 3 can be issued in the

scheme sA from three scenarios: s1, s2, and s3. However, in a second scheme, sB, the scenarios

s1 and s2 would be issued to a credential with the LoA Substantial, but s3 would be issued to the

LoA High.

To state this more generally, assume that the credential a translates to the credential b. Then it

does not in general hold that the preimages of a and b under issueA and issueB are equal. That

is, assuming:

 𝑓𝐴𝐵(𝑎) = 𝑏,

𝑎−1 = {𝑥|𝑖𝑠𝑠𝑢𝑒𝐴(𝑥) = 𝑎}, and

𝑏−1 = {𝑥|𝑖𝑠𝑠𝑢𝑒𝐵(𝑥) = 𝑏},

it does not in general follow that 𝑎−1 = 𝑏−1.

To make sure that fAB never gives more than one result, we define it as the minimum among the

possibilities:

𝑓𝐴𝐵(𝑎) = min{𝑖𝑠𝑠𝑢𝑒𝐵(𝑠) | 𝑖𝑠𝑠𝑢𝑒𝐴(𝑠) = 𝑎}

This definition assumes a complete ordering on the credentials. The LoAs of eIDAS or

ISO29115 are examples of concepts that define such an ordering.

However, even if the credentials are not completely ordered, it may still be possible to choose

some minimal credential, and use it in application of the above definition. For example, if the

credentials are partially ordered and a least credential (e.g. ⊥, meaning no credential issued)

exists, the definition of fAB can be applied with the min replaced by greatest-lower-bound.

Truck License
Motorcycle

License

Driver’s License

Figure 2 Partially Ordered Credentials

Formal Description and Analysis of Concepts (1)

Document name: Formal Description and Analysis of Concepts (1) Page: 31 of 38

Dissemination: PU Version: Version 1.0 Status: Final

The above example on translation makes it impossible to obtain by translation the credential that

certifies the holder as at least 21 years old. This is because the other scheme, which we are

translating from, only has credentials that certify a lower age.

Example – Partially Ordered Credentials

As an example of credentials that are partially ordered, consider credentials that represent driver’s

licenses. Let us consider a scheme that issues three types of licenses; a regular driver’s license, a

motorcycle license, and a truck license. Further, let us assume that the motorcycle- and truck-licenses

can be used whenever the regular driver’s license can be used, but neither of the two can replace the

other.

So the motorcycle- and truck-licenses are not ordered with respect to each other, but both are

“greater” than the regular driver’s license.

Now consider a translation from a credential of another scheme into such a license. If the result should

be the motorcycle license or the truck license depending on the scenario the credential was issued

from, then fAB should return the minimum of the two; which is impossible because they are not

comparable. So the definition of fAB does not provide a translation. However, taking the min in the

definition of fAB to mean greatest-lower-bound will fix this. Then fAB returns the regular driver’s license.

Example – Translation

 𝑖𝑠𝑠𝑢𝑒𝐴(𝑖𝑛_𝑝𝑒𝑟𝑠𝑜𝑛, 𝑝𝑎𝑠𝑠𝑝𝑜𝑟𝑡, 𝑎𝑔𝑒) =
LoA 2 if 𝑖𝑛_𝑝𝑒𝑟𝑠𝑜𝑛 = 𝑡 ∧ 𝑎𝑔𝑒 ≥ 20
LoA 1 otherwise if 𝑖𝑛_𝑝𝑒𝑟𝑠𝑜𝑛 = 𝑡 ∧ 𝑎𝑔𝑒 ≥ 18
LoA 0 otherwise

𝑖𝑠𝑠𝑢𝑒𝐵(𝑖𝑛_𝑝𝑒𝑟𝑠𝑜𝑛, 𝑝𝑎𝑠𝑠𝑝𝑜𝑟𝑡, 𝑎𝑔𝑒) =
LA if 𝑖𝑛_𝑝𝑒𝑟𝑠𝑜𝑛 = 𝑡 ∧ 𝑎𝑔𝑒 ≥ 21
LB otherwise if 𝑖𝑛_𝑝𝑒𝑟𝑠𝑜𝑛 = 𝑡 ∧ 𝑎𝑔𝑒 ≥ 18
⊥ otherwise

In this example the space of scenarios has three Boolean properties, S = {B x B x N}, in_person,

passport, and age. The schemes sA and sB are different in the condition for issuing the highest level

credential:

In this case it is not possible to get a LA credential by translating from a credential issued under

scheme sA – even if the holder of the credential is actually 21 years old or older.

Formal Description and Analysis of Concepts (1)

Document name: Formal Description and Analysis of Concepts (1) Page: 32 of 38

Dissemination: PU Version: Version 1.0 Status: Final

Given that the age in question is 21, making an exception allowing those who are at least 20 to

get that credential is probably a bad idea because of the legal implications. But if the age limit

was set more arbitrarily – for example an age limit that decides who is entitled to a senior rebate

– then a more lax policy might be preferable.

The view of Translation Policies we present here allows for that. Authorities can design a

translation policy as they see fit – possibly by use of a tool based on fAB that provides a draft.

The LIGHTest Automatic Trust Verifier (ATV) can then query the translation policy.

Another thing that is interesting to consider, is making the ATV responsible for executing fAB.

Then the Issuing Authorities are only responsible for defining their own schemes (and not how

they translate to other schemes), and the ATV must query the Trust Translation Authority for this

information. Note that the information must be defined by the Issuing Authorities in such a way

that it is comparable to information from other Issuing Authorities.

Formal Description and Analysis of Concepts (1)

Document name: Formal Description and Analysis of Concepts (1) Page: 33 of 38

Dissemination: PU Version: Version 1.0 Status: Final

10. GUI Mockup

This is a quick mockup of a graphical editor for translation of trust schemes in LIGHTest -- similar

ideas may be used for the specification of trust policies itself or other translations.

At the beginning, we shall have the credentials between which the translation should be defined

side by side -- we only consider here the most general case of tuple-based credentials, the other

cases are of course similar. So let us consider two imaginary credential types

"EasyTrustIdentity" and "QuatschID".

Figure 3 Credential View

They have several attributes of several types, where "String" is a human-readable text, while

"Crypto" stands for some bitstring that is not intended for the human eye. For each credential

type we may define special types like some ordinal value (with an order defined, e.g.

Low<Medium<High or A>B>C). Some values may have also a "safe default", e.g. Trust-level

"Low", i.e., when nothing better is known, we can assume that default. Note that such a default

can be tricky, e.g. 0 of 4 stars as "Reviews" may be considered a terrible value.

Formal Description and Analysis of Concepts (1)

Document name: Formal Description and Analysis of Concepts (1) Page: 34 of 38

Dissemination: PU Version: Version 1.0 Status: Final

First we may define how the fields correspond to each other:

Figure 4 Credential Translation

Here the green arrows -- note this is only a first mockup, and other visualizations may be chosen

-- denote that a field on the source credential literally carries over to the target credential.

The blue arrow is the more complicated case "it depends" ... here the translation is specified for

several values in detail. The red dot indicates that here we have no translation, so a safe default

must be taken.

The more complicated translation indicated by the blue arrows is now in our opinion best

described by a set of different cases. Let us have as case one, that "Trustlevel low" is translated

into "LoA 1":

Figure 5 Translation from Low to 1

The next case is that "Trustlevel Medium" translated to "LoA 2":

Formal Description and Analysis of Concepts (1)

Document name: Formal Description and Analysis of Concepts (1) Page: 35 of 38

Dissemination: PU Version: Version 1.0 Status: Final

Figure 6 Translation from Medium to 2

Finally, "Trustlevel High" translates to "Loa 3" but only if also the attribute "Human" is true in the

source. And then also "In person" will be true in the translation:

Figure 7 Translation from High to 3

This is of course just a made-up example, but it should illustrate the most common translation:

 Specify on the target side the case you want to translate to

 Then select on the source side what is at least required for it.

 One may also distinguish between attributes on the source side to have exactly that
value vs. "or better". The latter is only possible if there is an order on the values, e.g. in
the source example we silently assumed that " Human [X]" is better than "Human []".

Formal Description and Analysis of Concepts (1)

Document name: Formal Description and Analysis of Concepts (1) Page: 36 of 38

Dissemination: PU Version: Version 1.0 Status: Final

11. References

Almousa, O., Mödersheim, S., & Viganò, L. (2015). Alice and Bob: Reconciling Formal Models

and Implementation. Festschrift in honor of Pierpaolo Degano, 2015.

Almousa, O., Mödersheim, S., Modesti, P., & Viganò, L. (2015). Typing and Compositionality for

Security Protocols: A Generalization to the Geometric Fragment. In Computer Security --

ESORICS 2015: 20th European Symposium on Research in Computer Security, Vienna,

Austria, September 21-25, 2015, Proceedings, Part II (pp. 209--229).

Becker, M., Fournet, C., & Gordon, A. (2010). SecPAL: Design and Semantics of a

Decentralized Authorization Language. J. Comput. Secur., 619--665.

Blass, A., Caso, G. d., & Gurevich, Y. (2012). An Introduction to DKAL. Microsoft Research.

FutureID-Project. (2014). D42.3 - APS Definition Functions.

FutureID-Project. (2015). D42.8 APS Files for Selected Authentication Protocols.

Hinrichs, T., & Genesereth, M. (2006). Herbrand Logic. Stanford.

Hopcroft, J. E., Motwani, R., & Ullman, J. D. (2003). Introduction to automata theory, languages,

and computation - international edition (2. ed). Addison-Wesley.

Mejborn, B. K. (2016). ASN.2: A model-driven approach to secure protocol implementation.

Mödersheim, S., & Katsoris, G. (2014). A Sound Abstraction of the Parsing Problem. {IEEE} 27th

Computer Security Foundations Symposium, (pp. 259--273). Vienna.

Programming languages, t. e. (1995). 13211-1:1995, ISO/IEC Information technology -

Programming languages - Prolog - General core. Geneva, Switzerland: International

Organization for Standardization.

Formal Description and Analysis of Concepts (1)

Document name: Formal Description and Analysis of Concepts (1) Page: 37 of 38

Dissemination: PU Version: Version 1.0 Status: Final

12. Project Description

LIGHTest project to build a global trust infrastructure that enables electronic transactions
in a wide variety of applications

An ever increasing number of transactions are conducted virtually over the Internet. How can

you be sure that the person making the transaction is who they say they are? The EU-funded

project LIGHTest addresses this issue by creating a global trust infrastructure. It will provide a

solution that allows one to distinguish legitimate identities from frauds. This is key in being able

to bring an efficiency of electronic transactions to a wide application field ranging from simple

verification of electronic signatures, over eProcurement, eJustice, eHealth, and law enforcement,

up to the verification of trust in sensors and devices in the Internet of Things.

Traditionally, we often knew our business partners personally, which meant that impersonation

and fraud were uncommon. Whether regarding the single European market place or on a Global

scale, there is an increasing amount of electronic transactions that are becoming a part of

peoples everyday lives, where decisions on establishing who is on the other end of the

transaction is important. Clearly, it is necessary to have assistance from authorities to certify

trustworthy electronic identities. This has already been done. For example, the EC and Member

States have legally binding electronic signatures. But how can we query such authorities in a

secure manner? With the current lack of a worldwide standard for publishing and querying trust

information, this would be a prohibitively complex leading to verifiers having to deal with a high

number of formats and protocols.

The EU-funded LIGHTest project attempts to solve this problem by building a global trust

infrastructure where arbitrary authorities can publish their trust information. Setting up a global

infrastructure is an ambitious objective; however, given the already existing infrastructure,

organization, governance and security standards of the Internet Domain Name System, it is with

confidence that this is possible. The EC and Member States can use this to publish lists of

qualified trust services, as business registrars and authorities can in health, law enforcement

and justice. In the private sector, this can be used to establish trust in inter-banking, international

trade, shipping, business reputation and credit rating. Companies, administrations, and citizens

can then use LIGHTest open source software to easily query this trust information to verify trust

in simple signed documents or multi-faceted complex transactions.

The three-year LIGHTest project starts on September 1st and has an estimated cost of almost 9

Million Euros. It is partially funded by the European Union’s Horizon 2020 research and

innovation programme under G.A. No. 700321. The LIGHTest consortium consists of 14

partners from 9 European countries and is coordinated by Fraunhofer-Gesellschaft. To reach out

beyond Europe, LIGHTest attempts to build up a global community based on international

standards and open source software.

Formal Description and Analysis of Concepts (1)

Document name: Formal Description and Analysis of Concepts (1) Page: 38 of 38

Dissemination: PU Version: Version 1.0 Status: Final

The partners are ATOS (ES), Time Lex (BE), Technische Universität Graz (AT),EEMA (BE),

G&D (DE), Danmarks tekniske Universitet (DK), TUBITAK (TR), Universität Stuttgart (DE), Open

Identity Exchange (GB), NLNet Labs (NL), CORREOS (ES), IBM Danmark (DK) and Globalsign

(FI). The Fraunhofer IAO provides the vision and architecture for the project and is responsible

for both, its management and the technical coordination.

The Fraunhofer IAO provides the vision and architecture for the project and is responsible for

both, its management and the technical coordination.

