
Incremental Event Calculus for Run-Time Reasoning

Incremental Event Calculus for Run-Time Reasoning

Efthimis Tsilionis eftsilio@di.uoa.gr, eftsilio@iit.demokritos.gr
Department of Informatics & Telecommunications,
National and Kapodistrian University of Athens, Greece
Institute of Informatics & Telecommunications, NCSR “Demokritos”, Greece

Alexander Artikis a.artikis@unipi.gr
Department of Maritime Studies, University of Piraeus, Greece
Institute of Informatics & Telecommunications, NCSR “Demokritos”, Greece

Georgios Paliouras paliourg@iit.demokritos.gr

Institute of Informatics & Telecommunications, NCSR “Demokritos”, Greece

Abstract

We present a system for online, incremental composite event recognition. In streaming
environments, the usual case is for data to arrive with a (variable) delay from, and to be
revised by, the underlying sources. We propose RTECinc , an incremental version of RTEC,
a composite event recognition engine with formal, declarative semantics, that has been
shown to scale to several real-world data streams. RTEC deals with delayed arrival and
revision of events by computing all queries from scratch. This is often inefficient since it
results in redundant computations. Instead, RTECinc deals with delays and revisions in a
more efficient way, by updating only the affected queries. We examine RTECinc theoret-
ically, presenting a complexity analysis, and show the conditions in which it outperforms
RTEC. Moreover, we compare RTECinc and RTEC experimentally using real-world and
synthetic datasets. The results are compatible with our theoretical analysis and show that
RTECinc outperforms RTEC in many practical cases.

1. Introduction

Streaming environments combine simple, derived events (SDEs) in order to recognize in real-
time composite events (CEs) that satisfy a given pattern. These patterns are collections
of simpler events, which are subject to temporal and atemporal constraints and may be
combined with static background knowledge (Cugola & Margara, 2012; Alevizos et al.,
2017; Giatrakos et al., 2020).

The Event Calculus for Run-Time Reasoning (RTEC) (Artikis et al., 2015) is a compos-
ite event recognition (CER) system that has been tested and proven efficient in numerous
applications, such as urban traffic management, public space surveillance and maritime sit-
uational awareness (Patroumpas et al., 2017). RTEC is a dialect of the Event Calculus,
which is a logic programming formalism for representing and reasoning about events and
their effects (Kowalski & Sergot, 1986). Moreover, RTEC includes various optimisation
techniques for computing the intervals of CEs in a data stream.

In real-life streaming tasks, the usual case is for the input events to arrive with variable
delays to the CER system. In the maritime domain, for example, delays occur in the
input events when the stations (terrestrial and satellite) that collect the position signals of
vessels have to deal with a great amount of messages. Furthermore, revisions or retractions

1

Tsilionis, Artikis, & Paliouras

may be applied to input events; e.g. the start or end time of an event may be wrong and
subsequently corrected by the event source.

Delays and retractions in the input stream are being handled by RTEC by means of
windowing. RTEC employs overlapping windows in order to ‘wait’ for delayed events and
retractions. A drawback is that CE intervals within a window are computed from scratch,
without considering the CE intervals of the previous overlapping windows. This way the
intervals of a CE will be re-calculated even if delays and retractions do not have an effect
on them. In previous work (Tsilionis et al., 2019a), we presented an incremental version
of RTEC, i.e. RTECinc , that overcomes this inefficiency for a type of CEs. In the present
paper, we extend the incremental algorithm in order to handle all types of CEs supported
by RTEC. In particular, the contributions of this paper are the following:

• We extend RTECinc by supporting all types of CEs of the language of RTEC.

• We provide a detailed theoretical evaluation of RTECinc and show the conditions in
which it achieves lower computational complexity compared to RTEC.

• We compare RTECinc and RTEC experimentally using real-world and synthetic
datasets from different application domains. The results are compatible with our
complexity analysis and show that RTECinc is preferable over RTEC in many practi-
cal cases. The code of RTECinc is publicly available1. Moreover, some of the employed
datasets are available2, allowing the reproducibility of our results.

The structure of the paper is as follows: Section 2 summarises the functionality of
RTEC. Sections 3 and 4 elaborate on the algorithmic details of the incremental procedure
and the complexity analysis. Section 5 presents our empirical analysis, while Section 6
discusses related work. Finally, in Section 7 we summarise the work and outline future
work directions.

2. Background: Run-Time Event Calculus

2.1 Language

The time model used by RTEC is linear and includes integer time-points (Artikis et al.,
2015). If F is a fluent — a property that is allowed to have different values at different
points in time — the term F=V denotes that fluent F has value V . Boolean fluents are a
special case in which the possible values are true and false. holdsAt(F=V, T) is a predicate
representing that fluent F has value V at time-point T . holdsFor(F=V, I) represents that I
is the list of maximal intervals for which F=V holds continuously. holdsAt and holdsFor are
defined in such a way that, for any fluent F , holdsAt(F=V, T) if and only if T belongs to
one of the maximal intervals of I for which holdsFor(F=V, I).

An event description in RTEC comprises rules that express: (a) event occurrences using
the happensAt predicate, (b) the effects of events using the initiatedAt and terminatedAt predicates,
(c) the values of fluents, with the use of the holdsAt and holdsFor predicates, as well as other,

1. https://github.com/eftsilio/Incremental_RTEC
2. The datasets concerning maritime activity in the area of Brest, France, are public and can be downloaded

through the link provided in the github repository of RTECinc .

2

Incremental Event Calculus for Run-Time Reasoning

Table 1: Main predicates of RTEC.

Predicate Meaning

happensAt(E, T) Event E occurs at time T

holdsAt(F=V, T) The value of fluent F is V at time T

holdsFor(F=V, I) I is the list of maximal intervals for which F=V holds
continuously

initiatedAt(F=V, T) At time T the simple fluent F=V is initiated

terminatedAt(F=V, T) At time T the simple fluent F=V is terminated

relative complement all(I ′, L, I) I is the list of maximal intervals produced by the
relative complement of the list of maximal intervals I ′

with respect to every list of maximal intervals of list L

union all(L, I) I is the list of maximal intervals produced by the
union of the lists of maximal intervals of list L

intersect all(L, I) I is the list of maximal intervals produced by the
intersection of the lists of maximal intervals of list L

possibly atemporal, parameters. Table 1 summarises the RTEC predicates available to the
event description developer. Variables start with an upper-case letter, while predicates and
constants start with a lower-case letter. Event Calculus events express instantaneous SDEs
and CEs, while fluent-value pairs express durative SDEs and CEs. In CER, the majority
of CEs are durative and, therefore, the task is to compute the maximal intervals for which
a fluent-value pair F=V representing a CE has a particular value continuously. A fluent
F may have at most one value at each time-point. This constraint is satisfied by built-in
axioms of RTEC (presented in the Appendix). Fluents in RTEC are of two kinds: simple
and statically determined. The incremental computation of the maximal intervals of simple
and statically determined fluent-value pairs is the subject of this paper.

2.1.1 Simple Fluents

Simple fluents are defined by means of initiatedAt and terminatedAt rules. Below we present an
abstract initiatedAt rule. terminatedAt rules have similar form.

initiatedAt(F=V, T)←
happensAt(A, T),

holdsAt(B=VB, T),

not happensAt(C, T),

not holdsAt(D=VD, T).

(1)

Rule (1) is a rule of conjunctions, meaning that all body literals should be satisfied in order
for the rule to fire. not denotes negation by failure (Clark, 1977). The variable T , present
at the head and all body literals, expresses that all literals are evaluated at the same time-
point. Rule (1) is satisfied at time-point T if event A has occurred at T , there exists an

3

Tsilionis, Artikis, & Paliouras

interval of fluent B that includes T , there is no occurrence of event C at T and there is no
interval of fluent D that includes T . We use the term positive to refer to events and fluents
that must occur at or include T , e.g. A and B, and the term negative to refer to events
and fluents that should not occur at or include T (symbol not), e.g. C and D. initiatedAt

and terminatedAt rules of type (1) are not restricted in the number of body literals. The only
requirement is the first body literal to be a positive happensAt predicate, which can then
be followed by a possibly empty set of positive/negative happensAt and holdsAt predicates.
An example simple fluent definition, from the maritime domain (Pitsikalis et al., 2019), is
presented below:

initiatedAt(gap(Vessel)=nearPorts, T)←
happensAt(gap start(Vessel), T),

holdsAt(withinArea(Vessel ,nearPorts)=true, T).

initiatedAt(gap(Vessel)=farFromPorts, T)←
happensAt(gap start(Vessel), T),

not holdsAt(withinArea(Vessel ,nearPorts)=true, T).

terminatedAt(gap(Vessel)=nearPorts, T)←
happensAt(gap end(Vessel), T).

terminatedAt(gap(Vessel)=farFromPorts, T)←
happensAt(gap end(Vessel), T).

(2)

The above set of rules formalises the notion of a ‘communication gap’. Communication
gaps occur when a vessel is not emitting its position, either due to the absence of a nearby
receiving station or on purpose. In maritime situational awareness, communication gaps
are important since the vessel’s behavior is unknown and may indicate an intention of
hiding (e.g. in cases of illegal fishing in a protected area). Notice that there is a distinction
between gaps occurring near ports and those occurring in the open sea. The former are
usually not significant in maritime monitoring. For a succinct formulation, we represent a
communication gap as a multi-valued fluent, as opposed to Boolean fluents.

gap start and gap end are input events produced by a module annotating vessel posi-
tion streams in real-time, indicating that a vessel stopped and re-started transmitting its
position, respectively (Patroumpas et al., 2017). withinArea(Vessel ,nearPorts) is a durative
input event, denoting the periods of time a vessel is near a port. It is produced by online
spatial processing of the position signals of the vessels (Santipantakis et al., 2018). Accord-
ing to rule-set (2), a communication gap is initiated for a Vessel if a gap start has occurred
near or far from ports, and terminated when a gap end event is detected.

RTEC utilises the time-points produced by initiatedAt and terminatedAt rules to construct
the maximal intervals during which a simple fluent has a particular value continuously.
Therefore, to compute the intervals I for which F=V , i.e. holdsFor(F=V, I), we find all
time-points Ts at which F=V is initiated by using initiatedAt rules, and then, for each Ts,
we compute the first time-point Tf after Ts at which F=V is terminated, by evaluating
terminatedAt rules. This is an implementation of the law of inertia.

4

Incremental Event Calculus for Run-Time Reasoning

Table 2: Examples of the three interval manipulation constructs of RTEC.

Interval manipulation IA IB IF
construct

union all([IA, IB], IF) [(5, 20), (26, 30)] [(28, 35)] [(5, 20), (26, 35)]

intersect all([IA, IB], IF) [(26, 31)] [(21, 26), (30, 40)] [(30, 31)]

relative complement all(IA, [IB], IF) [(5, 20), (26, 30)] [(1, 4), (18, 22)] [(5, 18), (26, 30)]

2.1.2 Statically Determined Fluents

In addition to simple fluents, an event description may include domain-specific holdsFor

rules that define the values of a fluent F in terms of the intervals of other fluents. These
fluents are called ‘statically determined’ and the rules that define them make use of interval
manipulation constructs — see the last three items of Table 1. Consider the following
abstract rule:

holdsFor(F=V, IF)←
holdsFor(A=VA, IA),

holdsFor(B=VB, IB),

interval manipulation([IA, IB], IF).

(3)

The evaluation of rule (3) will produce the maximal intervals IF of F=V , by combining the
maximal intervals IA and IB of A=VA and B=VB according to a given interval manipulation
operation. The three interval manipulation constructs of RTEC are union all, intersect all and
relative complement all. Table 2 displays examples of these constructs. A term of the form
(Ts, Te) represents the closed-open interval [Ts, Te). IF in union all([IA, IB], IF) is a list of
maximal intervals that includes each time-point that is part of the lists of maximal intervals
IA or IB. IF in intersect all([IA, IB], IF) is a list of maximal intervals that includes each time-
point that is part of the lists IA and IB. Finally, IF in relative complement all(IA, [IB], IF) is
a list of maximal intervals including each time-point of IA that is not part of IB.

Consider the following example definition of a statically determined fluent from the
maritime domain:

holdsFor(rendezVous(Vessel1 ,Vessel2)=true, I)←
holdsFor(proximity(Vessel1 ,Vessel2)=true, Ip),

holdsFor(lowSpeed(Vessel1)=true, Il1),

holdsFor(lowSpeed(Vessel2)=true, Il2),

holdsFor(stopped(Vessel1)=farFromPorts, Is1),

holdsFor(stopped(Vessel2)=farFromPorts, Is2),

union all([Il1, Is1], I1),

union all([Il2, Is2], I2),

intersect all([I1, I2, Ip], I).

(4)

According to rule (4) two vessels are assumed to perform a rendezVous if they are close to
each other and are stopped in the open sea or moving with low speed. Maritime analysts

5

Tsilionis, Artikis, & Paliouras

are interested in these cases as they may be indicators of illegal ship-to-ship transfers. The
proximity fluent is a durative input SDE denoting the periods of time in which two vessels
are close to each other, and is produced by online spatial processing. lowSpeed and stopped
are simple fluents denoting when a vessel is moving with a low speed or stopped, respectively.

The interval manipulation constructs of RTEC support the following type of specifi-
cation: for all time-points T , F=V holds at T if and only if a Boolean combination of
fluent-value pairs holds at T . For many fluents, this is a much more concise (and cheaper)
specification than the traditional style of Event Calculus representation, i.e. identifying all
conditions in which the fluent is initiated and terminated, so that maximal intervals may
then be computed using the domain-independent holdsFor.

2.2 Semantics and Operation

The language of RTEC supports non-monotonic reasoning and favours Clark completion
since it assumes a closed-world description, meaning that the information provided for pred-
icates is sufficient and necessary. Rules in RTEC are ‘safe’, i.e. every variable that appears
in the head of the rule or in any negative literal in the body also appears in at least one posi-
tive literal in the body. CE definitions are (locally) stratified logic programs (Przymusinski,
1987). Stratification allows the mapping of all fluent-value pairs F=V and all events to the
non-negative integers. At level 0 we find the events and statically determined fluents that
do not depend on any other events or fluents, and serve as input to the CER system (these
are the explicit facts of our knowledge base). Simple fluents are output entities and thus,
belong to higher strata. Events and fluents of level n are defined in terms of at least one
event or fluent-value of level n−1 and a possibly empty set of events and fluent-values from
levels lower than n− 1. In other words, we restrict our attention to hierarchical definitions;
in Figure 1 we present an example CE definition hierarchy from the maritime domain. The
restriction to hierarchical definitions allows RTEC to perform recognition in a bottom-up
manner, according to which the fluents and events at the bottom of the hierarchy are pro-
cessed first and their intervals are cached. Subsequently, RTEC processes the events and
fluents of the next level and caches their intervals, and reaches level-by-level the top of the
hierarchy. This way, when evaluating the rules of level n, the intervals of the fluents and
events of the body literals are simply fetched from the cache, thus avoiding unnecessary
re-computations.

A CER system consumes a stream of SDEs which may not necessarily be temporally
ordered, meaning that there may exist a (variable) delay between the time each SDE occurs
and the time of arrival at the CER system. Furthermore, there may be revisions and
retractions of SDEs. Consider for example the case where the parameters of an SDE were
originally computed erroneously and subsequently revised, or the case where an SDE was
reported by mistake, and the mistake was realized later (Anicic et al., 2012).

In RTEC, the CER process involves the computation of the maximal intervals of fluent-
value pairs expressing CEs. This process takes place at specified query times q1, q2,
The recognition at each qi is performed over the SDEs that fall within a specified interval,
the ‘working memory’ or window ω. All SDEs outside the window are discarded and not
considered during recognition. This means that at each qi the CER depends only on the

6

Incremental Event Calculus for Run-Time Reasoning

withinArea

gap

trawlSpeed

stopped

beforeAground

trawling

anchored

lowSpeed

underWay

travelSpeed

speedLessThanMin

speedGreaterThanMax

rendezVous

aground

unusualSpeed

drifting

atAnchor

Figure 1: Hierarchy graph of maritime CE definitions (Pitsikalis et al., 2019). The nodes
of the graph express fluents while an arrow from node X to node Y expresses that fluent X
is a body literal in the definition of fluent Y.

SDEs that took place in the interval (qi − ω, qi]. The size of ω as well as the temporal
distance between two consecutive query times — the step (qi−qi−1) — are user-specified.

In order to deal with delays or retractions of SDEs, the user must set ω to be longer
than the step, i.e. qi−ω < qi−1 < qi. When ω is longer than the step, it is possible that
an SDE occurs in the interval (qi−ω, qi−1] but arrives at RTEC in (qi−1, qi]; its effects are
taken into account at query time qi. Similarly, the effects of SDE retraction will be taken
into consideration for SDEs that took place in (qi−ω, qi−1] and were revised in (qi−1, qi].
However, information may still be lost. Any SDEs arriving or retracted between qi−1 and
qi are discarded at qi if they took place before or at qi−ω.

At each query time qi, RTEC computes from scratch and stores the intervals of fluent-
value pairs expressing CEs. Figure 2 illustrates the process of computing the initiation
points of the fluent-value pair F=V at two consecutive query times with the use of rule (1)
(see page 3). In this example, the window ω is longer than the step; this way, we may
consider delayed arrivals or retraction of events, as well as fluent intervals calculated or
removed at qi and falling in (qi−ω, qi−1]. At the upper part of Figure 2 the upward arrows
represent the initiation points calculated at the previous query time qi−1 with the use of
rule (1). These points are the result of occurrences of event A and intervals of fluent B that
include the occurrences of A. Additionally, event C did not occur at these time-points and
the intervals of fluent D did not include these time-points.

At the bottom part of Figure 2, we present the initiation points produced by evaluating
rule (1) at qi. Notice the presence of delayed arrivals for events A and C (green dots), of a
new interval computed for fluent D (green line), of a retraction of event C (red dot), and of
an interval reduction for fluent B. The delayed arrival of event A along with the retraction
of event C lead to a new initiation point. Two initiation points that were present at qi−1
are no longer present at qi. The first, due to the new interval of fluent D or the diminished

7

Tsilionis, Artikis, & Paliouras

interval of fluent B (both have the same effect), and the second due to a delayed arrival of
event C.

However, three out of the four initiation points calculated at qi are identical among the
two query times (see the vertical dashed lines). These initiation points are not affected by
delays and retractions, but are re-computed. This is unnecessary and indicates the redun-
dant computations performed by RTEC. Note that the same has to be done for termination
points. In large event descriptions, expressing big CE hierarchies (recall e.g. Figure 1), this
process can be very expensive. The example displayed in Figure 2 concerns simple fluents,
but RTEC suffers from similar inefficiencies in the case of statically determined fluents. In
the following sections we will present methods for the incremental evaluation of the maximal
intervals of both types of fluents, addressing these inefficiencies.

time

ω

qi-1

time

ω

qiqi-1

qi-1 - ω

qi - ω

happensAt(A, T),

holdsAt(B=VB, T),

not happensAt(C, T),

not holdsAt(D=VD, T).

happensAt(A, T),

holdsAt(B=VB, T),

not happensAt(C, T),

not holdsAt(D=VD, T).

Rule (1)

Figure 2: Example of initiation point computation. The upper part of the figure shows the
initiation points of fluent-value pair F=V , as defined by rule (1), calculated at the previous
query time qi−1, while the bottom part shows the initiation points calculated at qi. Dots
represent event occurrences, unlabeled horizontal lines represent fluent intervals and arrows
facing upwards represent initiation points. Green dots express event instances that arrived
at RTEC at qi. Green lines express fluent intervals that were calculated at qi. Red dots
(resp. lines) express event instances (fluent intervals) that were retracted at qi. On the
left of each part of the figure, we display the conditions of rule (1), indicating the type of
event/fluent expressed by the corresponding row of dots/lines. For example, the first row of
dots expresses occurrences of event A, the second row of lines expresses intervals of fluent
B, and so on. Vertical dashed lines indicate the initiation points that are common between
the two query times.

8

Incremental Event Calculus for Run-Time Reasoning

Table 3: Notation of incremental simple fluent computation.

Notation Meaning

seQi
The set of starting/initiation and ending/termination points calculated at qi
and falling in (qi−ω, qi−1]

IQi
The set of event occurrences and fluent intervals available at qi
and overlapping (qi−ω, qi−1]

I+
The set of event occurrences and fluent intervals inserted at qi
and overlapping (qi−ω, qi−1]

I−
The set of event occurrences and fluent intervals retracted at qi
and overlapping (qi−ω, qi−1]

3. Incremental Evaluation of Simple Fluents

We present RTECinc , an extension of RTEC that includes a process for the incremental
computation of the intervals of simple fluents. In what follows, we assume that windows
are overlapping, i.e. that qi−ω < qi−1 < qi. Moreover, incremental computation concerns
the overlap between consecutive windows, i.e. (qi−ω, qi−1]. Reasoning in (qi−1, qi] may be
performed using RTEC. Recall from Section 2.1.1 that the intervals of a simple fluent are
produced on the basis of its initiation and termination points. Notice also that some of
the initiation and termination points might not contribute to the intervals of the fluent at
qi but might contribute to future intervals. To make this more clear, assume that at the
previous query time, qi−1, an ending point, Tf , was calculated, but the absence of a starting
point, Ts, prevented the construction of the interval (Ts, Tf]. Furthermore, consider that at
qi the delayed arrival of an event gives rise to the starting point Ts < Tf and as result to
the interval (Ts, Tf]. Thus, we must store all the initiation and termination points that fall
inside the overlap of consecutive windows, i.e. (qi−ω, qi−1].

Table 3 summarizes the notation used throughout this section. Algorithm 1 shows
the pseudo-code of recogniseSimpleFluent, the procedure for incrementally computing and
storing the intervals of simple fluents in RTECinc . This procedure comprises several steps,
some of which are in common with RTEC and are shown in bold. First, RTECinc retrieves
from the computer memory the initiation and termination points seQi−1 and the maximal
intervals IQi−1 of F=V computed at the previous query time qi−1 (see line 1).

Algorithm 1 recogniseSimpleFluent

1: retrieve(F=V, seQi−1 , IQi−1)
2: deleteSEpoints(F=V, seQi−1)
3: computeSEpoints(F=V, seQi−1 , seQi)
4: makeIntervals(seQi , IQi)
5: symmetricDifference(IQi , IQi−1 , I+, I−)
6: assert(F=V, seQi , IQi , I+, I−)

9

Tsilionis, Artikis, & Paliouras

The second step (line 2 in Algorithm 1) deletes initiation and termination points, calcu-
lated at qi−1 and no longer holding at qi. Next, the addition phase (line 3 in Algorithm 1)
calculates new initiation and termination points, i.e. points that were not present at qi−1.
The details of the deletion and addition steps are presented in the following sub-sections.
The time-points that survived the deletion phase and the new ones produced in the addition
phase constitute the initiation/termination points of F=V at qi, i.e. seQi . The next step
concerns the construction of the intervals of F=V by means of the initiation and termina-
tion points. This process is done as in RTEC and leads to the intervals of F=V at qi, I

Qi

(line 4 in Algorithm 1).

At the end of this process, RTECinc computes the intervals that were added (I+),
and retracted (I−) for F=V at qi. This is necessary because F=V itself may participate,
positively or negatively, in the body of initiatedAt and terminatedAt rules of a fluent of a higher
stratum. For example, consider again the hierarchy displayed in Figure 1 and notice that
the intervals of the fluent rendezVous depend on the intervals of the fluents stopped and
lowSpeed . In order to calculate incrementally the intervals of rendezVous, we need to know
the intervals that were added (I+) and retracted (I−) for each one of the two constituent
fluents. This is achieved by calculating the symmetric difference between the intervals of
F=V calculated at qi−1, I

Qi−1 , and the intervals calculated at qi, I
Qi (line 5 in Algorithm 1).

Finally, the computed list of intervals IQi , along with the initiation/termination points
calculated at qi, se

Qi , and the intervals in I+ and I−, are stored (line 6 in Algorithm 1),
replacing the ones computed at qi−1.

In the following subsections, we delve into the details of the deletion and the addi-
tion phases, since these constitute the main differences between RTECinc and RTEC, with
respect to simple fluent recognition.

3.1 Deletion phase

In the deletion phase, RTECinc examines which of the initiation and termination points
falling in the overlapping part of two consecutive windows, (qi−ω, qi−1], still hold at qi. An
initiation/termination point may no longer hold for several reasons. In the case of negative
happensAt literals (see e.g. literal C in rule (1) on page 3), the event may have occurred
in the interval (qi−ω, qi−1] but arrived in (qi−1, qi]. If the time occurrence of this delayed
event coincides with an initiation/termination point calculated at qi−1, the latter must be
retracted. In the case of negative fluents (see fluent D in rule (1)), an interval, not present
at qi−1, computed at qi and falling in (qi−ω, qi−1] may include an initiation/termination
point. Again, the initiation/termination point should be removed.

In the case of positive events (see event A in rule (1)), the time of occurrence of the event
may have been reported by mistake at qi−1, and by qi the mistake may have been realized
and the specific event occurrence retracted. If the time of this event occurrence coincides
with the time of an initiation/termination point, then this point should be deleted. Finally,
in the case of positive fluents (see fluent B in rule (1)), an interval, calculated at qi−1
and falling in (qi−ω, qi−1], that included an initiation/termination point may be deleted or
reduced. As a consequence, the interval may no longer include the initiation/termination
point and once again this point should be removed.

10

Incremental Event Calculus for Run-Time Reasoning

To determine which of the initiation/termination points of F=V survive, we use a
transformation of the rules expressing CE definitions. Rule (5) below e.g. is a transformation
of rule (1): [

initiatedAt(F=V, T)
]seQi−1

←[
happensAt(A, T)

]I−
∨[

holdsAt(B=VB, T)
]I−

∨[
happensAt(C, T)

]I+
∨[

holdsAt(D=VD, T)
]I+

.

(5)

Rule (5) is a delta rule determining if an initiation point must be deleted; termination
points are handled in a similar manner. As opposed to rule (1), this is a rule of disjunctions.
Notice that the negative predicates of rule (1) occur positively in the body of rule (5). The
superscripts in the head and the body literals indicate the set in which the time argument
T is evaluated on. See Table 3 for the definitions of these sets. We evaluate rule (5) for
each initiation point of seQi−1 , i.e. for each initiation point calculated at qi−1 that falls in
(qi−ω, qi−1]. Since rule (5) consists of disjunctions, it suffices for the time argument of only
one of the body literals to match the value of T in the head in order for the rule to be
satisfied. Rule (5) fires, stating that an initiation point T in seQi−1 should be deleted, if
and only if one of the following conditions is satisfied:

(a) T coincides with the time of a retracted occurrence of event A (set I−).

(b) T belongs to a retracted interval of B=VB (set I−).

(c) T matches the timestamp of a delayed arrival of event C (set I+).

(d) T belongs to a new interval of D=VD calculated at qi (set I+), due to a delayed event
arrival or retraction.

When all points in seQi−1 have been examined the deletion phase terminates. Figure 3
illustrates the deletion phase with the use of an example. The evaluation of rule (1) at qi−1
results in the initiation points shown in the upper part of Figure 3. The occurrences of
event A belonging to intervals of B=VB, not coinciding with occurrences of event C and
not included in the intervals of D=VD, leads to the calculation of these points at qi−1. In
the bottom part of Figure 3, rule (5) is used to examine which of these points should be
removed. The vertical dashed lines indicate the points not surviving the deletion process.
The deletion of each of these points is due to one of the four conditions outlined above.
For example, the first initiation point is removed because the corresponding occurrence of
A was retracted, while the last one was removed due to an interval of D=VD, calculated at
qi, that includes this initiation point.

11

Tsilionis, Artikis, & Paliouras

time

ω

qi-1

time

ω

qiqi-1

qi-1 - ω

qi - ω

Rule (1)

happensAt(A, T),

holdsAt(B=VB, T),

not happensAt(C, T),

not holdsAt(D=VD, T).

Rule (5)

[happensAt(A, T)]
I

 v

-

[holdsAt(B=VB, T)]
I
 v

-

+
 [happensAt(C, T)]

I
 v

[holdsAt(D=VD, T)]
I
 .
+

Figure 3: Illustration of the deletion phase. The upper part of the figure shows the initiation
points calculated at qi−1 using rule (1). The bottom part displays the deletion process at
qi using the delta rule (5). The non-overlapping part of the two query times, (qi−1, qi] is
greyed out since the deletion phase concerns only the overlapping part, i.e. (qi−ω, qi−1].
Dots represent event occurrences, unlabeled horizontal lines represent fluent intervals and
arrows facing upwards represent initiation points. The black color signifies event occurrences
and fluent intervals present both at qi−1 and qi, the green color signifies delayed arrival of
events and fluent interval computation at qi, while the red color signifies event occurrences
and fluent intervals retracted at qi. On the left of each part of the figure, we display the
rule conditions indicating the type of event/fluent expressed by the corresponding row of
dots/lines. Enlarged dots and lines denote participation in the deletion process. The vertical
dashed lines indicate the initiation points that will be removed.

3.2 Addition phase

Once the deletion phase has completed, the addition phase commences. The addition phase
consists of the calculation of new initiation and termination points, i.e. points that were
not present at qi−1. The new time-points may belong to the overlapping part of the two
consecutive windows, (qi−ω, qi−1], or to the non-overlapping part, (qi−1, qi]. We focus on
the overlapping part, since it differentiates the method of computation of RTECinc from
that of RTEC. Computation in the non-overlapping part, (qi−1, qi], is identical in the two
algorithms, since initiation/termination points belonging to this part are not affected by
delays or retractions.

Consider rule (1) again and assume that at qi−1 the rule did not fire, but all body
predicates except the first one were satisfied at time-point T . At qi a delayed arrival of
event A at time-point T will activate the rule. Similarly, deletions of event occurrences or
fluent intervals may lead to the satisfaction of a rule. For example, if rule (1) did not fire at

12

Incremental Event Calculus for Run-Time Reasoning

initiatedAt(F=V, T)←[
happensAt(A, T)

]I+
,[

holdsAt(B=VB, T)
]IQi

,

not

[
happensAt(C, T)

]IQi

,

not

[
holdsAt(D=VD, T)

]IQi

.

(a)

initiatedAt(F=V, T)←[
happensAt(A, T)

]IQi\I+
,[

holdsAt(B=VB, T)
]I+

,

not

[
happensAt(C, T)

]IQi

,

not

[
holdsAt(D=VD, T)

]IQi

.

(b)

initiatedAt(F=V, T)←[
happensAt(C, T)

]I−
,[

happensAt(A, T)
]IQi\I+

,[
holdsAt(B=VB, T)

]IQi\I+
,

not

[
holdsAt(D=VD, T)

]IQi

.

(c)

initiatedAt(F=V, T)←[
happensAt(A, T)

]IQi\I+
,[

holdsAt(D=VD, T)
]I−

,[
holdsAt(B=VB, T)

]IQi\I+
,

not

[
happensAt(C, T)

]IQi ∪ I−

.

(d)

(6)

qi−1 due to the fact that event C occurred at T , but at qi the specific occurrence of event
C was retracted, the rule would fire.

To calculate the new initiation points, we use the delta rules presented in (6) (termina-
tion points are handled similarly). The rules in (6) are examined in the given order. The
superscripts of these rules correspond to the set in which the time argument T is evaluated
and are presented in Table 3. In rule (6)(a), event A is evaluated over the occurrences that
arrived at RTECinc at qi (set I+). The time-points in set I+ are examined against all the
intervals of B=VB (set IQi) overlapping the interval (qi−ω, qi−1]. If an interval of B=VB in-
cludes a time-point in set I+, then this time-point should not coincide with any occurrence
of event C, and should not overlap any of the intervals of D=VD. If all of these conditions
are satisfied, then the rule fires and gives rise to a new initiation point. Figure 4(a) shows
the calculation of an initiation point belonging to part (qi−ω, qi−1] by means of rule (6)(a).

Rule (6)(b) is similar to (6)(a), but has a small modification which ensures that deriva-
tions are not repeated. In this rule, only the intervals computed at qi are considered for
B=VB (set I+). However, event A is matched against the occurrences at qi, excluding the
occurrences that were inserted to the system at qi (set IQi \ I+). This means that we ex-
amine only time-points falling in (qi−ω, qi−1] and present to the system from the previous
query time qi−1, excluding the ones, if any, that were retracted at qi. This is important in
order to avoid repeating evaluations. If in rule (6)(b) we used all the time-points of event
A at qi, then we would have to repeat evaluations, since the inserted time-points of event A
at qi (set I+) are included in the occurrences of the event at qi. The negative body literals
are evaluated as in rule (6)(a). Figure 4(b) shows the calculation of an initiation point
belonging to (qi−ω, qi−1] by using rule (6)(b).

Rule (6)(c) examines if a retracted occurrence of event C (set I−) can lead to a new
initiation point. Recall from rule (1) that we demand the absence of event C in order for
the rule to be satisfied. Thus, if at qi there are deleted occurrences of event C, this means

13

Tsilionis, Artikis, & Paliouras

time

ω

qiqi-1qi - ω

Rule (6)(a)

(a)

[happensAt(A, T)]
I
 ,

not [holdsAt(D=VD,T)]
I

 .

[holdsAt(B=VB, T)]
I

 ,
Qi

not [happensAt(C, T)]
I

 ,
Qi

Qi

Rule (6)(b)

 [happensAt(A, T)]
I \

I
,

Qi

[holdsAt(B=VB, T)]
I

,

 not [happensAt(C, T)]
I

 ,
Qi

not [holdsAt(D=VD, T)]
I

 .
Qi

ω

qiqi-1qi - ω

time

(b)

Rule (6)(c)

time

qiqi-1qi - ω

(c)

[happensAt(C, T)]
I

,

[happensAt(A, T)]
I \ I

,

Qi

not [holdsAt(D=VD, T)]
I

 .
Qi

ω

Qi

[holdsAt(B=VB, T)]
I \ I

,

Rule (6)(d)

ω

(d)

not [happensAt(C, T)]
I

 U I
.

[holdsAt(D=VD, T)]
I

,

[happensAt(A, T)]
I \ I

,

Qi

Qi

[holdsAt(B=VB, T)]
I \ I

,

Qi
time

qiqi-1qi - ω

+

+

+

-

+

+

+

-

+

-

Figure 4: Illustration of the addition phase. Dots represent event occurrences, unlabeled
horizontal lines represent fluents intervals and arrows facing upwards represent initiation
points. The black color signifies event occurrences and fluent intervals present both at qi−1
and qi, the green color signifies events arriving at, and fluent intervals computed at qi, while
the red color signifies event occurrences and fluent intervals retracted at qi. Enlarged dots
and lines denote participation in the addition phase. The vertical dashed lines indicate
the time-points and intervals that give rise to a new initiation point. Each of the four
illustrations corresponds to a delta rule of rule-set (6). The non-overlapping part of the two
query times, (qi−1, qi], is greyed out in all illustrations since we focus on the overlapping
part, i.e. (qi−ω, qi−1].

14

Incremental Event Calculus for Run-Time Reasoning

that event C did not actually occur at the previously reported time-points, and thus an
initiation point of F=V should have been calculated. Notice that the conditions of the
rule have been re-ordered for performance reasons. Now, event C is evaluated first. This
favors computation since the time-points in set I− are usually few. Figure 4(c) shows the
calculation of an initiation point belonging to (qi−ω, qi−1] by using rule (6)(c).

Rule (6)(d) examines the deleted intervals of D=VD. At qi−1 an interval of D=VD may
have prevented the calculation of an initiation point. If at qi this interval of D=VD is
deleted, the rule will produce a new initiation point. We employ the same optimisations as
in the previous two rules, but we also introduce a new one concerning negative literals. In
rule (6)(c) we examined event C over the time-points in I−. If any of these points led to
new initiation points, then these derivations should not be repeated in rule (6)(d). In order
to achieve this, we evaluate event C negatively over all its occurrences at qi including the
deleted ones (set IQi ∪ I−). In other words, we take into account the occurrences in I−,
which are not present at qi in order to avoid repeating derivations. Figure 4(d) shows the
calculation of an initiation point belonging to (qi−ω, qi−1] by means of rule (6)(d).

In each of the four delta rules, a body literal is evaluated over the set I+ or I−. In prac-
tice these sets are small, compared to the set of all event occurrences and fluent intervals,
i.e. the set IQi . By using these small sets, the evaluation is faster and the performance is
improved compared to the recomputation from scratch of RTEC. The introduced optimisa-
tions also ensure that a new initiation point can be produced by only one of the four delta
rules.

3.3 Complexity analysis

We present a worst-case complexity analysis of RTECinc concerning simple fluents. We focus
on the cost of computing maximal simple fluent intervals in the overlap of two consecutive
query times, i.e. (qi−ω, qi−1]. We omit the non-overlapping part, (qi−1, qi], since the cost is
the same in RTEC and RTECinc . Moreover, we make assumptions that lead to the worst
overall cost of the incremental procedure as opposed to the worst case of one of its phases.
We make this choice because the assumptions leading to the worst case of one phase, e.g. the
addition phase, do not necessarily lead to the worst case of the other (e.g. deletion) phase.

Table 4 summarizes the notation of the complexity analysis. We assume that there are
e events and fluents in the body of an initiatedAt/terminatedAt rule defining a simple fluent.
Incremental reasoning makes sense only in the presence of delays and retractions falling
in the overlap of two consecutive windows. Therefore, we assume that each of the e body
literals of a rule will have n delayed insertions and retractions, i.e. n > 0.

3.3.1 Analysis of RTECinc

Deletion phase. In the deletion phase of the incremental procedure, the initiation and
termination points seQi−1 calculated at qi−1 and falling in (qi−ω, qi−1] are examined in order
to determine if they hold at qi. This is achieved by the use of delta rules of type (5) presented
on page 11. Assuming that there are l rules of type (1) (page 3) defining a fluent, then we
will have l delta rules of type (5). In these delta rules each of the initiation/termination
points calculated at qi−1 is checked against the delayed insertions of positive body events
and fluents, as well as against the retractions of negative events and fluents. Evaluating

15

Tsilionis, Artikis, & Paliouras

Table 4: Complexity analysis notation.

Notation Meaning

mOV Number of time-points in (qi−ω, qi−1]
e Number of event and fluent types

n
Number of event occurrences or fluent intervals
inserted and retracted at (qi−1, qi] and overlapping (qi−ω, qi−1]

l Number of simple fluent rules

a happensAt predicate expressing an event in the body of a delta rule of type (5) requires
retrieving the event’s inserted or retracted time-points from the computer memory, and
checking whether the initiation/termination point under investigation coincides with one
of these inserted/retracted time-points. Similarly, evaluating a holdsAt predicate requires
retrieving from the computer memory the inserted or retracted intervals of the fluent, and
checking whether the initiation/termination point belongs to these intervals. In the worst
case, all body literals of the delta rules of type (5) will be evaluated, and thus, the cost of
the deletion phase is bound by:

O
(
l × |seQi−1 | × e× n

)
, (7)

where l is the number of the delta rules, |seQi−1 | represents the number of initiation/
termination points calculated at qi−1 and falling in (qi−ω, qi−1], e is the number of events
and fluents in the body of a delta rule, and n the number of insertions/deletions of an event
or fluent within (qi−ω, qi−1], as recorded in (qi−1, qi] (see Table 4). Notice that in practice
l and e are small, while |seQi−1 | and n are only a small subset of a sliding window.

Addition phase. The purpose of the addition phase is to compute the initiation/
termination points that are the result of delayed insertions and retractions, by using delta
rules of type (6). Each initiatedAt/terminatedAt rule contains e events and fluents. Therefore,
each of the l rules of type (1) is transformed to e delta rules of type (6), leading to l×e delta
rules in total. In each of these rules, only one event or fluent is evaluated over its delayed
insertions or retractions. Next, the insertions/retractions of this event or fluent are checked
against all the occurrences and intervals of the remaining body events and fluents in order
to produce a new initiation/termination point. In the worst case, each insertion/retraction
of an event and each inserted/retracted interval of a fluent will contribute a new initia-
tion/termination point, and thus, the cost of computing the initiation/termination points
by using all l × e delta rules is bound by:

O
(
l × e2 × n× |IQi |

)
, (8)

where |IQi | is the number of event occurrences or fluent intervals in (qi−ω, qi−1].
The addition phase is more expensive than the deletion phase. During the addition

phase, we have to evaluate more delta rules than the deletion phase. Furthermore, in
the evaluation of a delta rule in the addition phase we examine the delayed insertions or

16

Incremental Event Calculus for Run-Time Reasoning

retractions of the first body literal against all the occurrences or intervals of the remaining
body literals; in contrast, in the deletion phase the body literals are evaluated only over
their delayed insertions and retractions. The number of delayed insertions and retractions
is usually less than the number of all event occurrences and fluent intervals.

Calculation of inserted and retracted fluent intervals. The final steps of the
incremental procedure consist of constructing intervals from starting and ending points,
and calculating the inserted and retracted intervals of fluents (see Algorithm 1 on page 9).
The cost of the former step is the same as that of RTEC. For the latter step, the cost of the
symmetric difference (see line 5 of Algorithm 1) of the intervals computed at qi−1, I

Qi−1 ,
and the intervals computed at qi, I

Qi , is limited by the sum of the sizes of the two lists,
given that each list of maximal intervals is sorted. Since the intervals calculated at qi−1 are
at most |seQi−1 |/2 and the intervals calculated at qi are at most |seQi |/2, the cost of the

symmetric difference is bound by O(|se
Qi |+|seQi−1 |

2).

3.3.2 Comparison of RTEC and RTECinc

We examine the conditions in which RTECinc is preferable over RTEC. The worst case
scenario for RTEC does not coincide with the worst case scenario for RTECinc and vice
versa. Hence, we perform a comparison for the worst case of each CER engine.

Worst case for RTEC. In evaluation from scratch, the worst case is that every time-
point of the overlap, (qi−ω, qi−1], is promoted to an initiation/termination point by all
initiatedAt/terminatedAt rules. Therefore, the cost of RTEC is bound by:

O
(
l ×m2

OV × e
)

, (9)

where mOV represents the number of time-points in the overlap (qi−ω, qi−1].
In the setting of the worst case for RTEC, the first body literal of an initiatedAt/terminatedAt

rule has mOV occurrences. Furthermore, these occurrences must coincide with the mOV

occurrences of each of the remaining positive body events and belong to the mOV/2 intervals
of the remaining positive body fluents. Additionally, there are no occurrences/intervals of
negative events and fluents or all their occurrences/intervals are retracted at qi. Based on
the above, and performing the appropriate substitutions and simplifications in the total
cost of RTECinc and in formula (9) of RTEC, we derive inequality (10), that expresses the
conditions in which RTECinc is preferable to RTEC:

n× e
mOV

< 1 (10)

In other words, the most important factor for improving performance effectively is the ratio
of delayed insertions/retractions to the degree of overlap.

The worst case of RTEC is extreme. However, the analysis of this case allows us to un-
ravel the factors that most influence the performance of incremental evaluation. Intuitively,
when there are few delays, RTECinc is the best option.

Worst case for RTECinc. In incremental evaluation, the worst case is when every time-
point in the overlap leads to an initiation/termination point at qi−1, and at qi all these

17

Tsilionis, Artikis, & Paliouras

points are retracted. In this case, RTEC is the preferred choice, since the cost of RTEC is
close to zero, as there are no time-points that can be promoted to initiation/termination
points. Deleting all initiation/termination points calculated at qi−1 is an inevitable opera-
tion for RTECinc , baring the cost of Eq. (7). In such extreme cases, where n is equal to (or
approximates) mOV, RTEC is the preferred option.

A typical case. Based on the experience of the authors in a range of CER applications,
including the two domains used in this paper (see Section 5), the following conditions hold:

• The number of initiatedAt/terminatedAt rules (l) is in the same order of magnitude as the
number of fluent and event types (e).

• |seQi−1 | ≈ |seQi | � mOV. To aid the presentation, we will represent the average
number of starting and ending points of all windows as |se|.

• The number of delays/retractions n is also a small fraction of the the window overlap,
i.e. n= mOV

c , where c is a constant.

By performing the appropriate substitutions in the total cost of RTECinc and in formula (9)
of RTEC, under these assumptions and minor simplifications, we conclude with the following
inequality:

n <
|se|
e

=⇒ c× |se|
e

> mOV . (11)

We observe again that the number of delays and retractions is the most crucial factor in
order for RTECinc to improve performance, where few delays favor RTECinc .

4. Incremental Evaluation of Statically Determined Fluents

In this section, we present the incremental evaluation of statically determined fluents. Recall
e.g. rule (3) in Section 2.1.2 (page 5) that expresses a statically determined fluent definition.
To simplify the presentation, when we refer to the intervals of a fluent we omit the value
of the fluent, e.g. the intervals of F=V are represented as IF . The evaluation of rule (3)
will produce the intervals of F=V , IF , by combining the intervals IA and IB according to
the given interval manipulation construct (see Table 1 on page 3). We will use rule (3) to
illustrate the presentation that follows, as well as the example intervals of A=VA and B=VB
that are displayed in Table 6.

We will describe the incremental process for each of the three manipulation constructs,
focusing on the overlapping part of the two query times, (qi−ω, qi−1], and assuming without
loss of generality that the definition of a statically determined fluent depends only on two
fluents (as in rule (3)). This is because a holdsFor rule with k body fluents may be rewritten
as a set of holdsFor rules with two fluents, each connected by means of auxiliary fluents.

Table 5 presents the notation concerning the analysis of statically determined fluents.
Moreover, in the sections that follow, we will use the equation below, stating that the
intervals IQi

F of F=V at qi, overlapping (qi−ω, qi−1], are equal to the intervals produced by

first calculating the relative complement of I
Qi−1

F with respect to I−F , i.e. by calculating the
intervals that are not retracted at qi, and then computing the union of these intervals with
the intervals I+F that are inserted at qi.

18

Incremental Event Calculus for Run-Time Reasoning

Table 5: Notation for interval manipulation and comparison.

Notation Description

IA ∪T IB union all operation of RTEC

IA ∩T IB intersect all operation of RTEC

IA \T IB relative complement all operation of RTEC

IA ⊆T IB Temporal subset; it denotes that the time-points of the intervals of IA
are included in the intervals of IB.

Table 6: Running example for the evaluation of rule (3)

A=VA B=VB

IQi−1 [(10, 15), (23, 30), (40, 50), (60, 70)] [(17, 21), (26, 35), (43, 47), (54, 65)]

I− [(10, 12), (27, 30), (43, 47)] [(19, 21), (43, 47), (60, 65)]

I+ [(54, 58), (80, 90), (95, 100)] [(37, 41), (82, 87), (105, 120)]

I
Qi−1

A∪TB [(10, 15), (17, 21), (23, 35), (40, 50), (54, 70)]

I
Qi−1

A∩TB [(26, 30), (43, 47), (60, 65)]

I
Qi−1

A\TB [(10, 15), (23, 26), (40, 43), (47, 50), (65, 70)]

I
Qi−1

B\TA [(17, 21), (30, 35), (54, 60)]

IQi
F =(I

Qi−1

F \T I−F) ∪T I+F (12)

4.1 Interval Union

First, we deal with the case of union all and assume that at the previous query time, qi−1, the

list of intervals of the body fluents of rule (3) is not empty, that is, I
Qi−1

A , I
Qi−1

B 6= ∅. If this
is not the case, then incremental evaluation will not improve performance. Furthermore,
we choose to analyze the case where each body fluent has retractions and insertions, that
is, I−A , I

−
B , I

+
A , I

+
B 6= ∅, as this is the most expensive case in terms of processing time.

4.1.1 RTEC

If we compute everything from scratch, as RTEC does, the evaluation of rule (3) leads to
the following computation:

IQi
F = IQi

A ∪T I
Qi
B (13)

The size of IQi
A and IQi

B is, in the worst case, |IQi
A |= |I

Qi−1

A | + |I−A | + |I+A | and

|IQi
B |= |I

Qi−1

B | + |I−B | + |I+B | respectively. To clarify, the worst case is for a deletion to
break an existing interval to two parts and for an insertion to introduce a new interval,
rather than extending an existing one. Additionally, in the worst case the lists of maximal
intervals of fluents A and B are non-overlapping, and since the two lists are temporally

19

Tsilionis, Artikis, & Paliouras

sorted, the cost of Eq. (13) is limited by the sum of the sizes of the two lists:

O
(
|IQi−1

A |+ |I−A |+ |I+A |+ |I
Qi−1

B |+ |I−B |+ |I+B |
)

(14)

4.1.2 RTECinc

In RTECinc , we want to produce the intervals of union all at qi by using the intervals of
union all calculated at qi−1 along with the deletions and insertions of the two body fluents at
qi. The incremental evaluation of union all is the following:

IQi
F =

[
(I

Qi−1

A∪TB) \T
↓
5©

[[
(I−A ∪T

↓
1©
I−B) \T

↓
2©

(I
Qi−1

A∩TB)
]
∪T
↓
4©

(I−A ∩T
↓
3©
I−B)

]]
∪T
↓
7©

(I+A ∪T
↓
6©
I+B) (15)

The interested reader may refer to the Appendix for the derivation of the incremental

formula from the non-incremental one of RTEC. I
Qi−1

A∪TB represents the result of rule (3) at

qi−1, and the term I
Qi−1

A∩TB represents the common time-points of the two body fluents at
qi−1, i.e. their intersection. Both these terms are known at qi. The circled numbers express
just one of the many possible orders of execution and serve as pointers when we want to refer
to a specific operation. Moreover, some of these operations may be performed in parallel

(e.g. operations 2©, 3© and 6©). First the intervals that must be removed from I
Qi−1

A∪TB are
considered (see operations 1©– 5© in Eq. (15)). We distinguish between two cases:

(a) The time-points belonging to the retracted intervals of both body fluents, A and B
(see operation 3© in Eq. (15)), must be removed from the intervals of F that were
calculated at the previous query time qi−1 (operation 5© in Eq. (15)).

(b) The time-points belonging to the retracted intervals of one body fluent, and not be-
longing to the intervals of the other body fluent that were computed at qi−1(operations
1© and 2© in Eq. (15)), must be deleted from the intervals of F (operation 5© in

Eq. (15)).

Subsequently, the union of the insertions of the two body fluents (operation 6© in Eq. (15))
is added to the outcome of operation 5© in Eq. (15) (operation 7© in Eq. (15)). In Table 7
we illustrate the evaluation of Eq. (15) with the aid of the example of Table 6, where we
provide the output of each operation.

We proceed with the complexity analysis of Eq. (15). Without loss of generality, assume

that |IQi−1

A | ≤ |IQi−1

B |. We assume the worst case scenario for all the operations, including
those involving retractions and insertions. For the operation I−A ∪T I−B the worst case is for
the intervals to be disjoint and thus for the output list to be of size |I−A |+ |I−B |. This implies
that the output of operation I−A ∩T I−B will be ∅. We selected this case as it leads both to the
largest cost and output for operation 5©. In Table 8 we present the cost of each operation of
Eq. (15) as well as the size of the output list. The latter facilitates understanding the steps
of the complexity analysis, since the output list of an operation participates in a subsequent
operation.

Notice that in the complexity analysis presented in Table 8 the cost of operation 4©
is zero since the output of operation 3© is empty. Furthermore, the output of the final

20

Incremental Event Calculus for Run-Time Reasoning

operation (7©) is not of interest since it is not used in any other operation. The overall cost
of Eq. (15) is produced by summing the cost of all operations and is the following:

O
(

2|IQi−1

A∪TB|+ 3|IQi−1

A∩TB|+ 5(|I−A |+ |I−B |) + 2(|I+A |+ |I+B |)
)

(16)

Table 7: Evaluation of Eq. (15) using the running example of Table 6

Operation Result

1© [(10, 12), (19, 21), (27, 30), (43, 47), (60, 65)]

2© [(10, 12), (19, 21)]

3© [(43, 47)]

4© [(10, 12), (19, 21), (43, 47)]

5© [(12, 15), (17, 19), (23, 35), (40, 43), (47, 50), (54, 70)]

6© [(37, 41), (54, 58), (80, 90), (95, 100), (105, 120)]

7© [(12, 15), (17, 19), (23, 35), (37, 43), (47, 50),
(54, 70), (80, 90), (95, 100), (105, 120)]

Table 8: Complexity analysis of Eq. (15)

Operation Cost Output

1© |I−A |+ |I−B | |I−A |+ |I−B |

2© |IQi−1

A∩TB|+ |I−A |+ |I−B | |IQi−1

A∩TB|+ |I−A |+ |I−B |
3© |I−A |+ |I−B | ∅

4© 0 |IQi−1

A∩TB|+ |I−A |+ |I−B |

5© |IQi−1

A∪TB|+ |I
Qi−1

A∩TB|+ |I−A |+ |I−B | |I
Qi−1

A∩TB|+ |I
Qi−1

A∩TB|+ |I−A |+ |I−B |

6© |I+A |+ |I+B | |I+A |+ |I+B |

7© |IQi−1

A∪TB|+ |I
Qi−1

A∩TB|+ -

|I−A |+ |I−B |+ |I+A |+ |I+B |

4.1.3 Comparison of RTEC and RTECinc.

Our goal is to identify the conditions under which the incremental evaluation of statically de-
termined fluents using union all is more efficient than the computation from scratch (RTEC).

21

Tsilionis, Artikis, & Paliouras

Table 9: RTECinc vs RTEC: union all. In all lines below, |I−A | = |I−B | = 0.

|I+
A | |I

+
B | Conditions in which RTECinc outperforms RTEC

6= 0 6= 0 |IQi−1

A∪TB| < 2|IQi−1

AB | − 2|I−+AB |

0 6= 0 |IQi−1

A∪TB| < 2|IQi−1

AB |

6= 0 0 |IQi−1

A∪TB| < 2|IQi−1

AB |
0 0 >

To achieve this, we compare the cost of RTEC, as given by Eq. (14), and that of RTECinc—
see Eq. (16). To facilitate the presentation:

• We will use |IQi−1

AB |, as opposed to |IQi−1

A | and |IQi−1

B |, to represent the number of
intervals of the two body fluents at the previous query time.

• We will sometimes use |I−+AB |, as opposed to |I−A |, |I−B |, |I+A | and |I+B |, to represent the
number of deletions/insertions of the two body fluents.

RTECinc is preferable to RTEC when:

O
(

2|IQi−1

A∪TB|+ 3|IQi−1

A∩TB|+ 14|I−+AB |
)
< O

(
2|IQi−1

AB |+ 4|I−+AB |
)
⇒

|IQi−1

A∪TB| < |IQi−1

AB | −
3

2
|IQi−1

A∩TB| − 5|I−+AB |

(17)

Unfortunately, this inequality does not hold in the presence of deletions, even if we assume
the best case for the individual operations of Eq. (15). In the case of the absence of deletions,
i.e. when I−A = I−B = ∅, Eq. (15), expressing the incremental evaluation of union all, is
simplified to the considerably cheaper following operations:

I
Qi−1

A∪TB ∪T
[
I+A ∪T I+B

]
(18)

Table 9 displays the conditions in which RTECinc is preferable to RTEC. Figure 5
illustrates, with the use of an example, the case displayed in the first line of Table 9.
RTECinc is preferred over RTEC as the number of intervals of the two body fluents increases
and the number of delayed insertions decreases. The cases in which RTEC is preferable can
be found in the complete comparison Table presented in the Appendix.

4.2 Interval Intersection

In this section, we present the incremental evaluation of the interval manipulation construct
intersect all and the benefits in performance.

22

Incremental Event Calculus for Run-Time Reasoning

time

ω

qi-1

time

ω

qiqi-1

qi-1 - ω

qi - ω

IAUTB

Qi-1

IA

Qi-1

IB

Qi-1

IAUTB

Qi

IA

Qi

IB

Qi

Figure 5: An example where RTECinc outperforms RTEC. The upper part shows the result
of union all at qi−1, while the bottom part displays the result of union all at qi. ω expresses the
sliding window. Unlabelled horizontal lines represent fluent intervals. Green lines express
fluent intervals inserted in (qi−1, qi]. Vertical dashed lines denote the common intervals of
IA∪TB at both query times. The non-overlapping part of the two query times, (qi−1, qi], in
the bottom part of the figure is greyed out.

4.2.1 RTEC

If we compute everything from scratch, the cost of evaluating intersect all is bound by Eq. (14)
again. In the worst case, the cost of intersect all is limited by the sum of the sizes of the two
lists of intervals.

4.2.2 RTECinc

We express the intervals of intersect all at qi by taking into consideration the result of inter-
section at qi−1, as well as the intervals of the two body fluents of rule (3) (page 5) that

were not part of intersection at qi−1. These body fluent intervals, represented as I
Qi−1

A\TB and

I
Qi−1

B\TA, may contribute to the evaluation of intersect all at qi in the case of delayed insertions.
The incremental evaluation of intersect all is as follows:

IQi
F =

[
I
Qi−1

A∩TB \T
↓
2©

[
(I−A ∪T

↓
1©
I−B)
]]

∪T
↓

10©[[
I+B ∩T

↓
5©

[
(I

Qi−1

A\TB \T
↓
3©
I−A) ∪T

↓
4©
I+A

]]
∪T
↓
9©

[
I+A ∩T

↓
8©

[
(I

Qi−1

B\TA \T
↓
6©
I−B) ∪T

↓
7©
I+B

]]] (19)

The derivation of the incremental formula of RTECinc from the non-incremental one
of RTEC is presented in the Appendix. Terms I

Qi−1

A\TB, I
Qi−1

B\TA and I
Qi−1

A∩TB are known at qi.

The circled numbers express a sequence of operations leading to the evaluation of Eq. (19).

23

Tsilionis, Artikis, & Paliouras

Table 10: Evaluation of Eq. (19) with the use of the running example of Table 6

Operation Result

1© [(10, 12), (19, 21), (27, 30), (43, 47), (60, 65)]

2© [(26, 27)]

3© [(12, 15), (23, 26), (40, 43), (47, 50), (65, 70)]

4© [(12, 15), (23, 26), (40, 43), (47, 50), (54, 58), (65, 70), (80, 90), (95, 100)]

5© [(40, 41), (82, 87)]

6© [(17, 19), (30, 35), (54, 60)]

7© [(17, 19), (30, 35), (37, 41), (54, 60), (82, 87), (105, 120)]

8© [(54, 58), (82, 87)]

9© [(40, 41), (54, 58), (82, 87)]

10© [(26, 27), (40, 41), (54, 58), (82, 87)]

In Eq. (19), we first delete from I
Qi−1

A∩TB the retracted intervals of A=VA and B=VB (see
operations 1©– 2© in Eq. (19)). Next, we compute the inserted intervals of B=VB that belong

to I
Qi−1

A\TB, after excluding the deletions of A=VA, or to the insertions of A=VA (operations

3©– 5©). We do the same for the insertions of A=VA (operations 6©– 8©). Finally, the
union of these operations provides the intersection of the intervals of the two fluents at qi
(operations 9©– 10©). Table 10 illustrates the incremental evaluation of intersect all with the
use of the running example displayed in Table 6 on page 19.

For the complexity analysis, we consider, as usual, the highest overall cost and the
largest possible output. The conditions that lead to the highest cost are the following:

1. I
Qi−1

A∩TB, I
Qi−1

A\TB, I
Qi−1

B\TA 6= ∅.

2. I−A ∩T I−B = ∅.

3. I
Qi−1

A∩TB remains unaffected after operation 2© of Eq. (19).

4. I−A splits all the intervals of I
Qi−1

A\TB in operation 3© and I−B splits the intervals of I
Qi−1

B\TA
in operation 6©.

5. I+B overlaps completely I
Qi−1

A\TB \T I
−
A and partially I+A . Accordingly I+A overlaps com-

pletely I
Qi−1

B\TA \T I
−
B and partially I+B .

A detailed analysis of the cost of each operation of Eq. (19) is presented in Table 11, in a

similar way as in Section 4.1. The output of operation 9© contains the term
|I+A |+|I

+
B |

2 , since
operations 5© and 8© produce some common intervals, which must be considered only once.

24

Incremental Event Calculus for Run-Time Reasoning

Table 11: Complexity analysis of Eq. (19)

Operation Cost Output

1© |I−A |+ |I−B | |I−A |+ |I−B |

2© |IQi−1

A∩TB|+ |I−A |+ |I−B | |IQi−1

A∩TB|

3© |IQi−1

A\TB|+ |I
−
A | |IQi−1

A\TB|+ |I
−
A |

4© |IQi−1

A\TB|+ |I
−
A |+ |I+A | |IQi−1

A\TB|+ |I
−
A |+ |I+A |

5© |IQi−1

A\TB|+ |I
−
A |+ |I+A |+ |I+B | |IQi−1

A\TB|+ |I
−
A |+ |I+A |

6© |IQi−1

B\TA|+ |I
−
B | |IQi−1

B\TA|+ |I
−
B |

7© |IQi−1

B\TA|+ |I
−
B |+ |I+B | |IQi−1

B\TA|+ |I
−
B |+ |I+B |

8© |IQi−1

B\TA|+ |I
−
B |+ |I+B |+ |I+A | |IQi−1

B\TA|+ |I
−
B |+ |I+B |

9© |IQi−1

A\TB|+ |I
−
A |+ |I+A |+ |IQi−1

A\TB|+ |I
−
A |+ |I

Qi−1

B\TA|+
|IQi−1

B\TA|+ |I
−
B |+ |I+B | |I−B |+

|I+A |+|I
+
B |

2

10© |IQi−1

A∩TB|+ |I
Qi−1

A\TB|+ |I
−
A |+ -

|IQi−1

B\TA|+ |I
−
B |+

|I+A |+|I
+
B |

2

Those intervals are the result of the intersection of I+A and I+B . By summing the costs of all
operations, we compute the bound of incremental intersect all:

O
(

2|IQi−1

A∩TB|+ 5(|IQi−1

A\TB|+ |I
Qi−1

B\TA|) + 9
2(|I+A |+ |I+B |) + 7(|I−A |+ |I−B |)

)
(20)

4.2.3 Comparison of RTEC and RTECinc.

We compare the cost of RTEC as given by Eq. (14), and that of RTECinc— see Eq. (20).
To facilitate the presentation, we simplify notation as follows:

• We will use |IQi−1

AB |, as opposed to |IQi−1

A | and |IQi−1

B |, to represent the number of
intervals of the two body fluents at the previous query time.

• We will use |IQi−1

A\TB| to denote |IQi−1

A\TB| and |IQi−1

B\TA|.

• We will sometimes use |I−+AB |, as opposed to |I−A |, |I−B |, |I+A | and |I+B |, to represent the
number of deletions/insertions of the two body fluents.

25

Tsilionis, Artikis, & Paliouras

Table 12: RTECinc vs RTEC: intersect all.

|I−A | |I
+
A | |I

−
B | |I

+
B | Conditions in which RTECinc outperforms RTEC

6= 0 0 6= 0 6= 0 |IQi−1

A∩TB| < |I
Qi−1

AB | − 3
2 |I

Qi−1

A\TB| − 2|I−+AB |

0 0 6= 0 6= 0 |IQi−1

A∩TB| < |I
Qi−1

AB | − |I
Qi−1

A\TB|

0 6= 0 0 6= 0 |IQi−1

A∩TB| < 2|IQi−1

AB | − 8|IQi−1

A\TB| − 7
2 |I−+AB |

6= 0 0 0 6= 0 |IQi−1

A∩TB| < |I
Qi−1

AB | − 3
2 |I

Qi−1

A\TB| − 3
2 |I−+AB |

0 0 0 6= 0 |IQi−1

A∩TB| < 2|IQi−1

AB | − 2|IQi−1

A\TB|

6= 0 6= 0 6= 0 0 |IQi−1

A∩TB| < |I
Qi−1

AB | − 3
2 |I

Qi−1

A\TB| − 2|I−+AB |

0 6= 0 6= 0 0 |IQi−1

A∩TB| < |I
Qi−1

AB | − 3
2 |I

Qi−1

A\TB| − 3
2 |I−+AB |

6= 0 0 6= 0 0 |IQi−1

A∩TB| < 2|IQi−1

AB | − 2|I−+AB |

0 0 6= 0 0 |IQi−1

A∩TB| < 2|IQi−1

AB |

6= 0 6= 0 0 0 |IQi−1

A∩TB| < |I
Qi−1

AB | − |I
Qi−1

A\TB|

0 6= 0 0 0 |IQi−1

A∩TB| < 2|IQi−1

AB | − 2|IQi−1

A\TB|

6= 0 0 0 0 |IQi−1

A∩TB| < 2|IQi−1

AB |
0 0 0 0 >

Then, RTECinc is preferable to RTEC when:

O
(

2|IQi−1

AB |+ 4|I−+AB |
)

> O
(

2|IQi−1

A∩TB|+ 10|IQi−1

A\TB|+ 23|I−+AB |
)
⇒

|IQi−1

A∩TB| < |IQi−1

AB | − 5|IQi−1

A\TB| −
19

2
|I−+AB |

(21)

Unfortunately, the above inequality cannot be satisfied. In other words, when the condi-
tions 1–5 stated above hold, RTEC is always the best option. Table 12 presents those cases
in which RTECinc outperforms RTEC. In Figure 6, we display an example that illustrates
one of the cases. The complete comparison can be found in the Appendix.

In the absence of deletions, as in the example of Figure 6, Eq. (19) may be simplified
to:

I
Qi−1

A∩TB ∪T
[
I+A ∩T I

Qi
B

]
∪T
[
I+B ∩T I

Qi
A

]
(22)

This is a much cheaper computation of intersect all as opposed to Eq (19).

26

Incremental Event Calculus for Run-Time Reasoning

time

ω

qi-1

time

ω

qiqi-1

qi-1 - ω

qi - ω

IA∩TB

Qi-1

IA

Qi-1

IB

Qi-1

IA∩TB

Qi

IA

Qi

IB

Qi

IB\T A

Qi-1

IA\T B

Qi-1

Figure 6: An example where RTECinc outperforms RTEC. This corresponds to the third
line of Table 12. ω expresses the sliding window. The upper part of the figure shows the
result of intersect all at qi−1, while the bottom part displays the result of intersect all at qi.
Unlabelled horizontal lines represent fluent intervals. Green lines express fluent intervals
inserted in (qi−1, qi]. Vertical dashed lines denote the common intervals of the two body
fluents, IA∩TB, at both query times.

4.3 Relative Complement

The last interval manipulation construct of RTEC is relative complement all. We examine the
case of the relative complement of A=VA with respect to B=VB.

4.3.1 RTEC

Since we refer to two fluents, the computation from scratch of RTEC is bound once again
by Eq. (14) (Artikis et al., 2015).

4.3.2 RTECinc

In the incremental case, we express the new intervals produced by relative complement all by tak-
ing into consideration not only the result of relative complement all at qi−1 but also the intervals
at qi−1 that hold for fluent B and not for A, as well as their common intervals. We represent

these two sets of intervals as I
Qi−1

B\TA and I
Qi−1

A∩TB, respectively. The incremental formula of
relative complement all is the following:

27

Tsilionis, Artikis, & Paliouras

IQi
F =

[
I
Qi−1

A\TB \T
↓
2©

(I−A ∪T
↓
1©
I+B)

]
∪T
↓

10©[[
I+A \T

↓
5©

[
(I

Qi−1

B\TA \T
↓
3©
I−B) ∪T

↓
4©
I+B

]]
∪T
↓
9©

[
I−B ∩T

↓
8©

[
(I

Qi−1

A∩TB \T
↓
6©
I−A) ∪T

↓
7©
I+A

]]] (23)

The derivation of Eq. (23) from the non-incremental one of RTEC may be found in the
Appendix. First, the intervals that have been inserted for B=VB or deleted from A=VA and

belong to I
Qi−1

A\TB, must be retracted (see operations 1©– 2© in Eq. (23)). Next, we calculate

which of the inserted intervals of A=VA are not in I
Qi−1

B\TA, after removing the deletions of

B=VB, and/or in the insertions of B=VB (see operations 3©– 5©). Subsequently, we include
in the result the retracted intervals of B=VB that are among the inserted intervals of A=VA
or belong to I

Qi−1

A∩TB, after discarding the deletions of A=VA (see operations 6©– 8©). Finally,
the union of the results of these operations constitutes the result of relative complement of
A=VA with respect to B=VB at qi (operations 9©– 10©). Table 13 illustrates the evaluation
of Eq. (23) with the use of our running example (see Table 6 on page 19).

The worst case, in terms of complexity, concerning the evaluation of incremental
relative complement all, arises when the following conditions hold:

1. I
Qi−1

A∩TB, I
Qi−1

A\TB, I
Qi−1

B\TA 6= ∅.

2. I−A ∩T I+B =∅.

3. I
Qi−1

A\TB remains unaffected after operation 2© of Eq. (23).

4. I
Qi−1

B\TA remains unaffected after operation 3© of Eq. (23).

5. I−A splits all the intervals of I
Qi−1

A∩TB (operation 6© of Eq. (23)).

6. I
Qi−1

B\TA, I
+
B ⊆T I

+
A .

7. I−B ⊆T (I
Qi−1

A∩TB\T I−A) and I−B∩T I+A =∅. This condition implies that I
Qi−1

A∩TB is produced
by the intervals of A=VA and B=VB at qi−1 that are exactly the same.

Table 14 presents the steps of the complexity analysis. The cost of incremental rela-

tive complement all is bound by:

O
(

2|IQi−1

A\TB|+ 5(|IQi−1

B\TA|+ |I
Qi−1

A∩TB|) + 5|I+A |+ 6|I+B |+ 7|I−A |+ 2|I−B |
)

(24)

4.3.3 Comparison of RTEC and RTECinc.

We compare the cost of RTEC as given by Eq. (14), and that of RTECinc . To facilitate the
presentation we make the usual simplifications in notation:

28

Incremental Event Calculus for Run-Time Reasoning

Table 13: Evaluation of Eq. (23) with the use of the running example of Table 6

Operation Result

1© [(10, 12), (27, 30), (37, 41), (43, 47), (82, 87), (105, 120)]

2© [(12, 15), (23, 26), (41, 43), (47, 50), (65, 70)]

3© [(17, 19), (30, 35), (54, 60)]

4© [(17, 19), (30, 35), (37, 41), (54, 60), (82, 87), (105, 120)]

5© [(80, 82), (87, 90), (95, 100)]

6© [(26, 27), (60, 65)]

7© [(26, 27), (54, 58), (60, 65), (80, 90), (95, 100)]

8© [(60, 65)]

9© [(60, 65), (80, 82), (87, 90), (95, 100)]

10© [(12, 15), (23, 26), (41, 43), (47, 50), (60, 70), (80, 82), (87, 90), (95, 100)]

Table 14: Complexity analysis of Eq. (24)

Operation Cost Output

1© |I−A |+ |I+B | |I−A |+ |I+B |

2© |IQi−1

A\TB|+ |I
−
A |+ |I+B | |IQi−1

A\TB|

3© |IQi−1

B\TA|+ |I
−
B | |IQi−1

B\TA|

4© |IQi−1

B\TA|+ |I
+
B | |IQi−1

B\TA|+ |I
+
B |

5© |IQi−1

B\TA|+ |I
+
B |+ |I+A | |IQi−1

B\TA|+ |I
+
B |+ |I+A |

6© |IQi−1

A∩TB|+ |I−A | |IQi−1

A∩TB|+ |I−A |

7© |IQi−1

A∩TB|+ |I−A |+ |I+A | |IQi−1

A∩TB|+ |I−A |+ |I+A |

8© |IQi−1

A∩TB|+ |I−A |+ |I+A |+ |I−B | |IQi−1

A∩TB|+ |I−A |

9© |IQi−1

B\TA|+ |I
+
B |+ |I+A |+ |IQi−1

B\TA|+ |I
Qi−1

A∩TB|+
|IQi−1

A∩TB|+ |I−A | |I−A |+ |I+A |+ |I+B |

10© |IQi−1

A\TB|+ |I
Qi−1

B\TA|+ |I
Qi−1

A∩TB|+ -
|I−A |+ |I+A |+ |I+B |

29

Tsilionis, Artikis, & Paliouras

Table 15: RTECinc vs RTEC: relative complement all.

|I−A | |I
+
A | |I

−
B | |I

+
B | Conditions in which RTECinc outperforms RTEC

6= 0 0 6= 0 6= 0 |IQi−1

A\TB| < |I
Qi−1

AB | − 3
2 |I

Qi−1

A∩TB| − 5
2 |I−+AB |

0 0 6= 0 6= 0 |IQi−1

A\TB| < |I
Qi−1

AB | − |I
Qi−1

A∩TB|

6= 0 6= 0 0 6= 0 |IQi−1

A\TB| < |I
Qi−1

AB | − 3
2 |I

Qi−1

B\TA| − 3|I−+AB |

0 6= 0 0 6= 0 |IQi−1

A\TB| < |I
Qi−1

AB | − 3
2 |I

Qi−1

B\TA| − 2|I−+AB |

6= 0 0 0 6= 0 |IQi−1

A\TB| < 2|IQi−1

AB | − 2|I−+AB |

0 0 0 6= 0 |IQi−1

A\TB| < 2|IQi−1

AB |

6= 0 0 6= 0 0 |IQi−1

A\TB| < |I
Qi−1

AB | − 3
2 |I

Qi−1

A∩TB| − 3
2 |I−+AB |

0 0 6= 0 0 |IQi−1

A\TB| < 2|IQi−1

AB | − 2|IQi−1

A∩TB|

6= 0 6= 0 0 0 |IQi−1

A\TB| < |I
Qi−1

AB | − |I
Qi−1

B\TA| −
|I−+

AB |
2

0 6= 0 0 0 |IQi−1

A\TB| < 2|IQi−1

AB | − 2|IQi−1

B\TB| −
|I−+

AB |
2

6= 0 0 0 0 |IQi−1

A\TB| < 2|IQi−1

AB |

0 0 0 0 >

• We will use |IQi−1

AB |, as opposed to |IQi−1

A | and |IQi−1

B |, to represent the number of
intervals of the two body fluents at the previous query time.

• We will use |I−+AB |, as opposed to |I−A |, |I−B |, |I+A | and |I+B |, to represent the number of
deletions/insertions of the two body fluents.

RTECinc is preferable to RTEC when:

O
(

2|IQi−1

AB |+ 4|I−+AB |
)
> O

(
2|IQi−1

A\TB|+ 5(|IQi−1

B\TA|+ |I
Qi−1

A∩TB|) + 20|I−+AB |
)
⇒

|IQi−1

A\TB|< |I
Qi−1

AB | −
5

2
(|IQi−1

B\TA|+ |I
Qi−1

A∩TB|)− 8|I−+AB |
(25)

The above inequality can be satisfied only if the deletion and insertion sets of the two
body fluents of rule (3) (page 5) are empty. In other words, in the wost case, RTEC is
the preferred option over RTECinc . Table 15 presents the conditions in which RTECinc

outperforms RTEC. The complete comparison can be found in the Appendix. An example
that satisfies the inequality of the fourth line of Table 15 is presented in Figure 7.

30

Incremental Event Calculus for Run-Time Reasoning

time

ω

qi-1

time

ω

qiqi-1

qi-1 - ω

qi - ω

IA\TB

Qi-1

IA

Qi-1

IB

Qi-1

IA\TB

Qi

IA

Qi

IB

Qi

IA∩T B

Qi-1

IB\T A

Qi-1

Figure 7: An example where RTECinc outperforms RTEC with respect to interval ma-
nipulation construct relative complement all. The upper part of the figure shows the result of
relative complement all at qi−1, while the bottom part the result of relative complement all at qi.
Unlabelled horizontal lines represent fluent intervals. Green lines express fluent intervals
inserted in (qi−1, qi]. Vertical dashed lines denote the common intervals of IA\TB at both
query times.

In the absence of deletions, we simplify the incremental evaluation of relative complement all

to the much cheaper formula below:[
I
Qi−1

A\TB \T I
+
B

]
∪T
[
I+A \T I

Qi
B

]
(26)

5. Empirical Analysis

In this section, we present our empirical analysis on real and synthetic datasets from the
fields of maritime monitoring and fleet management.

5.1 Experimental Setup

RTEC and RTECinc are pure Prolog implementations — the source code of both systems
is publicly available3,1. RTEC already uses various optimisation techniques for efficient
stream reasoning, such as a rule compilation stage that rewrites the rules in order to take
advantage of Prolog’s built-in indexing mechanism. Details about RTEC may be found in
Artikis et al. (2015) and the manual of RTEC4. RTECinc inherits all optimisation techniques

3. https://github.com/aartikis/RTEC
4. https://github.com/aartikis/RTEC/blob/master/RTEC_manual.pdf

31

Tsilionis, Artikis, & Paliouras

of RTEC. A difference in the implementation of RTECinc with respect to RTEC concerns
the use of Prolog’s internal database. The assertion and retraction of clauses is performed
by using the internal database in RTECinc and the usual way, i.e. with the use of assertz
and retract predicates, in RTEC.

The datasets used in the empirical analysis are stored as CSV files, where each line
corresponds to an input event (indicative datasets are available with the code of RTECinc

1).
We simulated a streaming behavior by consuming the input events little by little, i.e. reading
small chunks periodically from the CSV files according to slide step specifications. The
experiments were designed with the goal of highlighting the gain in performance RTECinc

can bring to Composite Event Recognition (CER) in comparison to RTEC. To demonstrate
the effect of the overlap between consecutive query times, we employ five temporal windows
with a constant step in all experiments. The experiments were performed on a computer
with 24 cores (Intel(R) Xeon(R) CPU E5-2630 v2 @ 2.60GHz) and 252 GB of RAM, running
Debian GNU/Linux 9 with Kernel 4.9.0-7-amd64 and YAP Prolog 6.2.2.

5.2 Maritime Situational Awareness

Maritime situational awareness concerns the recognition of compostite maritime events,
such as ship-to-ship transfer, fishing and dangerous sailing, and is typically achieved by
monitoring the messages vessels emit while sailing at sea. These messages are exchanged
through the Automatic Identification System (AIS5) and contain information about the
position, heading, speed, etc of vessels at different points in time. The timestamp of an AIS
message refers to the time of the measurement on board. By using temporally sorted AIS
messages one may reconstruct the trajectory of a vessel. Moreover, it has been shown that
the trajectory of a vessel may be compressed by retaining only a subset of the AIS messages,
called ‘critical points’, which allow for an accurate trajectory reconstruction (Patroumpas
et al., 2017). These critical points convey information about the start/end of sailing at a
low/high speed, changes in speed/heading, notifications about communication gaps, turns,
etc. Furthermore, the critical points can be spatially processed in order to discover various
relations, such as the entrance or exit of a vessel in an area of interest, and the proximity of
two vessels (Santipantakis et al., 2018). The critical points along with the spatial relations
constitute the input (SDEs) to our system.

The composite event description used in our empirical analysis includes sixteen simple
fluents and five statically determined fluents, forming a hierarchy displayed in Figure 1
on page 7. The definitions of the statically determined fluents contain three operations of
union all, three operations of intersect all, and two operations of relative complement all.

Terrestrial and satellite stations collect and forward the AIS messages emitted by the
vessels to the CER system. The stations have to deal with a large number of messages
and due to this high traffic significant delays may occur. The CER system must handle
in an efficient way the delayed arrival of events in order to minimize the recognition loss.
Our empirical evaluation includes delayed SDEs, but not SDE retraction, as SDEs are
not retracted in maritime monitoring. However, delayed fluent interval retraction (and
assertion) may take place in the higher levels of the fluent hierarchy (see Figure 1 on
page 7). Consider, for example, the simple fluent gap in Figure 1. Assume that at the

5. http://www.imo.org/en/OurWork/Safety/Navigation/Pages/AIS.aspx

32

Incremental Event Calculus for Run-Time Reasoning

(a) Brest, France: Synthetic delays dataset (b) Europe: Natural delays dataset

Figure 8: Position signals of the two datasets (Pitsikalis et al., 2019).

current query time qi new intervals are computed for gap. This may lead to the retraction
of intervals for fluents stopped and lowSpeed since gap participates negatively in the body of
these fluents. Furthermore, the retraction of intervals for the fluents stopped and lowSpeed
will lead to the retraction of intervals for the fluent rendezVous.

We employed two datasets for our empirical analysis; the first is a publicly available
dataset6 concerning the area of Brest, France, and the second concerns all European seas,
and was provided to us by IMIS Global7, our partner in the datAcron project8. The geo-
graphical coverage of the datasets is displayed in Figure 8. Both datasets are temporally
sorted. As a result, they did not include delays. For the dataset of Europe, we additionally
obtained the AIS messages with timestamps that reveal the time the message left the ter-
restrial/satellite station. These timestamps differ from the timestamps recorded on board.
By using the timestamps of the terrestrial/satellite stations and sorting the dataset we are
able to retain the natural delays. For the Brest dataset these timestamps were not available
and the experimental evaluation was performed by introducing synthetic delays.

5.2.1 Synthetic delays

The first dataset concerns approx. 5K vessels sailing in the Atlantic Ocean around the port
of Brest, France, and spans a period from 1 October 2015 to 31 March 2016 (Ray et al.,
2019). The dataset consists of approx. 5M critical and spatial SDEs. The delays in this
dataset cannot be recovered and an approach of artificially injecting delays was adopted.
We performed a series of 5 experiments, each time differentiating the amount of SDEs
being delayed. We selected uniformly 5%, 10%, 20%, 40% and 80% of the total events to
be delayed. We used a uniform distribution for selecting events, since we assume that each
event has the same probability to be delayed. Regarding the magnitude of the delay, in the
real world, delays of few hours are more probable to happen, even though delays of over 16
hours have been observed in the maritime domain (Camossi et al., 2017; Ray et al., 2016).
In order to mimic reality, as much as possible, we used a Gamma distribution with shape
parameter k = 2 and scale parameter θ = 2. Thus, a small delay had a higher probability

6. https://zenodo.org/record/1167595/#.X5aQwC8RrOQ
7. https://imisglobal.com
8. http://datacron-project.eu

33

Tsilionis, Artikis, & Paliouras

12h/17K 24h/35K 48h/70K 96h/141K 168h/249K
0

10

20

30

40

50

60

70

80

90

100

≈52%
≈62% ≈76%

≈85%

≈89%

Window (Hours/SDEs)

A
vg

T
im

e
(i
n
se
co
n
d
s)

RTEC inc

RTEC

(a) Total recognition time (5%)

12h/17K 24h/35K 48h/70K 96h/141K 168h/249K
−100
−80
−60
−40
−20

0

20

40

60

80

100

Window (Hours/SDEs)

R
T
E
C

in
c
%

Im
p
ro
ve
m
en
t

Simple
Statically Determined

(b) Fluent improvement (5%)

12h/17K 24h/35K 48h/70K 96h/141K 168h/249K
−100
−80
−60
−40
−20

0

20

40

60

80

100

Window (Hours/SDEs)

R
T
E
C

in
c
%

Im
p
ro
ve
m
en
t

union all
intersect all
relative complement all

(c) Interval manipulation construct
improvement (5%)

12h/16K 24h/33K 48h/67K 96h/138K 168h/246K
0

10

20

30

40

50

60

70

80

90

100

≈51%
≈63% ≈75%

≈82%

≈88%

Window (Hours/SDEs)

A
vg

T
im

e
(i
n
se
co
n
d
s)

RTEC inc

RTEC

(d) Total recognition time (10%)

12h/16K 24h/33K 48h/67K 96h/138K 168h/246K
−100
−80
−60
−40
−20

0

20

40

60

80

100

Window (Hours/SDEs)

R
T
E
C

in
c
%

Im
p
ro
ve
m
en
t

Simple
Statically Determined

(e) Fluent improvement (10%)

12h/16K 24h/33K 48h/67K 96h/138K 168h/246K
−100
−80
−60
−40
−20

0

20

40

60

80

100

Window (Hours/SDEs)

R
T
E
C

in
c
%

Im
p
ro
ve
m
en
t

union all
intersect all
relative complement all

(f) Interval manipulation construct
improvement (10%)

12h/14K 24h/30K 48h/62K 96h/131K 168h/238K
0

10

20

30

40

50

60

70

80

90

100

≈48%
≈58% ≈74%

≈82%

≈84%

Window (Hours/SDEs)

A
vg

T
im

e
(i
n
se
co
n
d
s)

RTEC inc

RTEC

(g) Total recognition time (20%)

12h/14K 24h/30K 48h/62K 96h/131K 168h/238K
−100
−80
−60
−40
−20

0

20

40

60

80

100

Window (Hours/SDEs)

R
T
E
C

in
c
%

Im
p
ro
ve
m
en
t

Simple
Statically Determined

(h) Fluent improvement (20%)

12h/14K 24h/30K 48h/62K 96h/131K 168h/238K
−100
−80
−60
−40
−20

0

20

40

60

80

100

Window (Hours/SDEs)

R
T
E
C

in
c
%

Im
p
ro
ve
m
en
t

union all
intersect all
relative complement all

(i) Interval manipulation construct
improvement (20%)

12h/11K 24h/23K 48h/51K 96h/117K 168h/224K
0

10

20

30

40

50

60

70

80

90

100

≈44%
≈56% ≈72%

≈78%

≈80%

Window (Hours/SDEs)

A
vg

T
im

e
(i
n
se
co
n
d
s)

RTEC inc

RTEC

(j) Total recognition time (40%)

12h/11K 24h/23K 48h/51K 96h/117K 168h/224K
−100
−80
−60
−40
−20

0

20

40

60

80

100

Window (Hours/SDEs)

R
T
E
C

in
c
%

Im
p
ro
ve
m
en
t

Simple
Statically Determined

(k) Fluent improvement (40%)

12h/11K 24h/23K 48h/51K 96h/117K 168h/224K
−100
−80
−60
−40
−20

0

20

40

60

80

100

Window (Hours/SDEs)

R
T
E
C

in
c
%

Im
p
ro
ve
m
en
t

union all
intersect all
relative complement all

(l) Interval manipulation construct
improvement (40%)

34

Incremental Event Calculus for Run-Time Reasoning

12h/4K 24h/10K 48h/29K 96h/89K 168h/194K
0

10

20

30

40

50

60

70

80

90

100

≈33% ≈45% ≈62%

≈72%

≈73%

Window (Hours/SDEs)

A
vg

T
im

e
(i
n
se
co
n
d
s)

RTEC inc

RTEC

(m) Total recognition time (80%)

12h/4K 24h/10K 48h/29K 96h/89K 168h/194K
−100
−80
−60
−40
−20

0

20

40

60

80

100

Window (Hours/SDEs)

R
T
E
C

in
c
%

Im
p
ro
ve
m
en
t

Simple
Statically Determined

(n) Fluent improvement (80%)

12h/4K 24h/10K 48h/29K 96h/89K 168h/194K
−100
−80
−60
−40
−20

0

20

40

60

80

100

Window (Hours/SDEs)

R
T
E
C

in
c
%

Im
p
ro
ve
m
en
t

union all
intersect all
relative complement all

(o) Interval manipulation construct
improvement (80%)

Figure 9: Results on the synthetic delays dataset (slide step of 12 hours). Each row of
diagrams corresponds to a different amount of delayed SDEs (5%, 10%, 20%, 40%, 80%).

to be imposed in a selected event. The average delay time in all settings was approximately
96 hours.

Even though this dataset spans a period of six months, it does not contain a large
number of AIS messages for each vessel. We employed large temporal windows, that usually
are not found in practice, in order to stress test the CER systems. Figure 9 presents
the results where the sliding window varies from 12 to 168 hours while the slide step is
constant and equal to 12 hours. Each row of diagrams of Figure 9 corresponds to a different
amount of delayed events while the diagram columns refer to (a) the total recognition time,
(b) the improvement RTECinc brings in the processing time of each fluent type and (c)
the improvement RTECinc achieves in the processing time of each interval manipulation
construct. The times displayed in the first column of diagrams of Figure 9 correspond to
the average recognition time. In the second and third columns of the diagrams of Figure 9,
positive values indicate an improvement in performance achieved by RTECinc while negative
values indicate a performance decrease. In all the diagrams of Figure 9 we state for each
sliding window the average number of SDEs falling inside. It should be noted that for a
different percentage of delayed events, the average number of SDEs may be different for the
same window size. For example, when 5% of the SDEs are delayed, the 168-hours window
includes 249K SDEs on average, while when 10% of the SDEs are delayed, the 168-hours
window contains 246K SDEs. This is due to the fact that some of the delayed events arrive
to the CER system too late to be taken into consideration.

Regarding recognition time, RTECinc achieves a performance gain for all the percentages
of delayed events and window sizes. This performance gain is highlighted for each sliding
window with the arrows in each diagram of the first column of Figure 9. The numbers on
top of the arrows denote the approximate improvement RTECinc brings to the overall recog-
nition. The performance gain becomes more profound as the sliding window size increases.
Furthermore, RTECinc has more predictable performance, as indicated by the standard de-
viations displayed in the left diagrams of Figure 9. RTECinc improves performance even in
the case of the 12-hours window, where there is no overlap in consecutive windows. This

35

Tsilionis, Artikis, & Paliouras

is mainly due to the fact that RTECinc recognizes the cases where interval computation is
unnecessary and avoids them.

The second column of Figure 9 shows the improvement of RTECinc as regards the
computation of the intervals of simple and statically determined fluents. In the case of
statically determined fluents, RTEC has a better performance than RTECinc , regardless of
the amount of delayed SDEs and the window size. The third column of Figure 9 refers to
the comparison of the three interval manipulation constructs. RTEC’s evaluation of the
interval manipulation constructs usually demands less amount of time. In the complexity
analysis we showed the conditions under which the incremental version of the three interval
manipulation constructs can outperform the non-incremental one. These conditions are
usually hard to satisfy, mainly for intersect all and relative complement all. The most decisive
factor for the performance of RTECinc is the number of intervals the body fluents of a rule
have from the previous query time. The higher the number of these intervals, the more
probable it is for the incremental procedure to improve performance. In the Brest dataset,
the SDEs referring to a vessel are infrequent, and as a consequence the produced intervals
of a fluent referring to a vessel may not be great in number.

Even in the cases where RTECinc improves the performance in all interval manipulation
constructs, the overall performance concerning statically determined fluents is worse than
RTEC. This lies in the fact that RTECinc operates on binary rules to produce the intervals
of a statically determined fluent, leading to costly memory operations. RTEC avoids this
issue as it is not restricted to binary rules for statically determined fluents.

RTECinc manages to produce the intervals of simple fluents more efficiently than RTEC.
This is the main reason why RTECinc achieves overall better performance than RTEC. Our
complexity analysis showed that the most important factor is the ratio of delayed events to
the size of the overlap. The lower this ratio is the higher the gain of RTECinc . By inspecting
the performance of RTECinc in the same window but for different percentages of delayed
events, one may verify that as the number of delayed events increases the improvement in
processing time also decreases.

5.2.2 Natural delays

The second dataset concerns 34K vessels sailing in the European seas in January 2016 (see
Figure 8(b) on page 33). The compression-annotation of the AIS messages and subsequently
the spatial processing yielded in total ≈ 17M SDEs. As already mentioned, this dataset
retains the natural delays and permits us to test the recognition systems in real life condi-
tions. Additionally, it allows us to test the scalability of the systems given the large number
of vessels and SDEs.

Figure 10 displays our experimental results. We used five different sliding windows,
varying from 1 to 16 hours, and a constant step of 1 hour to examine the effect of the overlap
in performance. The number of SDEs increases dramatically even for smaller windows
compared to the Brest dataset. Both RTECinc and RTEC are capable of supporting real-
time CER in this demanding dataset. RTECinc manages again to improve performance in
all window sizes and as the overlap of consecutive query times increases, this improvement is
more pronounced (Figure 10(a)). Again, the arrows demonstrate the improvement RTECinc

36

Incremental Event Calculus for Run-Time Reasoning

1h/39K 2h/79K 4h/158K 8h/317K 16h/635K
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

≈18%
≈26%

≈52%

≈70%

≈82%

Window (Hours/SDEs)

A
vg

T
im

e
(i
n
m
in
u
te
s)

RTEC inc

RTEC

(a) Total recognition time

1h/39K 2h/79K 4h/158K 8h/317K 16h/635K
−100
−80
−60
−40
−20

0

20

40

60

80

100

Window (Hours/SDEs)

R
T
E
C

in
c
%

Im
p
ro
ve
m
en
t

Simple
Statically Determined

(b) Fluent improvement

1h/39K 2h/79K 4h/158K 8h/317K 16h/635K
−100
−80
−60
−40
−20

0

20

40

60

80

100

Window (Hours/SDEs)

R
T
E
C

in
c
%

Im
p
ro
ve
m
en
t

union all
intersect all
relative complement all

(c) Imc improvement

Figure 10: Results with the natural delays dataset (slide step of 1 hour).

achieves in each sliding window. Additionally, in contrast to RTEC, RTECinc exhibits a
near linear increase in processing time, as the size of the window increases.

In Figure 10(b) we present RTECinc ’s improvement in processing time for statically
determined and simple fluents, compared to RTEC. In contrast to the experiments per-
formed with the synthetic delays dataset, RTECinc now manages to improve performance
in all windows for statically determined fluents. The great increase in SDEs allows the
incremental procedure to achieve the observed performance gain. In Figure 10(c) the in-
cremental operations achieve better performance in 4, 8 and 16-hours windows, illustrating
that as the overlap increases the effects of the incremental process on performance are more
pronounced.

Regarding the processing of simple fluents, RTECinc again significantly enhances the
performance of RTEC. As the overlap of consecutive query times increases, the performance
gain of RTECinc over RTEC increases. This result validates further our complexity analysis
and highlights the importance of the ratio of delayed events to overlapping events.

5.3 Fleet Management

The European economy relies to a great extent on commercial vehicle fleets. According to
the European Automobile Manufacturers Association9, there were over 54 Million commer-
cial vehicles in use in Europe in 2015, and this number is growing every year. Commercial
vehicles are equipped with devices emitting information regarding their location and op-
erational status, such as speed and fuel level. Fleet management applications collect the
information emitted from moving vehicles in order to improve the management and plan-
ning of transportation services, and enable informed decision-making. Detecting CEs from
such data streams can be beneficial for the drivers of commercial vehicles, since they can
be informed about their performance, and even prevent dangerous situations. Additionally,
the analysis of data generated by such a fleet of vehicles can help the owners maximize the
performance of the fleet.

9. http://www.acea.be/statistics/article/vehicles-in-use-europe-2017

37

Tsilionis, Artikis, & Paliouras

In the context of the Track & Know10 project, we developed an online fleet management
system for the recognition of CEs, that improves the operating efficiency of a commercial
fleet. Our system utilises the GPS (Global Positioning System) traces of moving vehicles
along with information emitted by installed accelerometer devices, such as abrupt acceler-
ation, and information concerning the level of fuel in a vehicle’s tank provided by a fuel
sensor. These traces are enriched with weather and Point-of-Interest (POI) information by
a dedicated component for data enrichment (Tsilionis et al., 2019b). The enriched data
stream is transmitted to the CER module, in order to recognize various types of vehicle
activity. All such activities have been formalized in collaboration with the domain experts
of the Track & Know project.

The event description includes four simple fluents. The rule-set below presents a simple
fluent formalisation that detects opportunities for refueling:

initiatedAt(reFuelOpportunity(V)=true, T)←
happensAt(closeToGas(V), T),

holdsAt(highSpeed(V)=true, T),

happensAt(fuelLevel(V,L), T),

threshold(V, fuel , Vtank), L < Vtank/2.

terminatedAt(reFuelOpportunity(V)=true, T)←
happensAt(fuelLevel(V,L), T),

threshold(V, fuel , Vtank), L ≥ Vtank/2.

(27)

Refueling opportunities can be helpful for companies owning commercial fleets, since they
place emphasis on fuel consumption. closeToGas(V) is a spatial relation computed by the
data enrichment module, indicating that a vehicle V is close to a gas station. highSpeed(V)
denotes that a vehicle V is moving with a speed greater than a user-specified threshold.
fuelLevel(V,L) is an SDE emitted by the fuel sensor of each vehicle. threshold(V, fuel , Vtank)
records the tank size of vehicles. According to rule-set (27), our system starts flagging that
vehicle V should refuel when it is close to a gas station, its speed is above the user-specified
threshold (implying uneconomic driving), and the fuel level is lower than half of the tank
size. Moreover, we stop flagging the need to refuel when the fuel is more than half of the
tank size.

We evaluated RTECinc on real-world positional data of vehicles, provided by Vodafone
Innovus11, our partner in the Track & Know project, which offers fleet management services.
The dataset concerns approx. 6K vehicles traveling in the European road network and spans
from 30 June 2018 to 8 August 2018. Each record of the data is enriched with weather data
and proximity to POIs, leading to approx. 70M SDEs. This large number of SDEs allows
us to test further the scalability of the CER engines.

Since the original dataset is temporally sorted, a strategy of artificially injecting delays
was followed as that described in Section 5.2.1. We performed five experiments, each time
varying the amount of SDEs being delayed (5%, 10%, 20%, 40% and 80%). The average
delay time, in all settings, is approximately 8 hours.

10. https://trackandknowproject.eu/
11. https://www.vodafoneinnovus.com/

38

Incremental Event Calculus for Run-Time Reasoning

1h/88K 2h/176K 4h/356K 8h/724K 16h/1470K
0

5

10

15

20

25

30

35

40

45

≈85%
≈88% ≈81%

≈76% ≈73%

Window (Hours/SDEs)

A
vg

T
im

e
(i
n
m
in
u
te
s)

RTEC inc

RTEC

(a) Total recognition time (5%)

1h/83K 2h/168K 4h/342K 8h/706K 16h/1451K
0

5

10

15

20

25

30

35

40

45

≈85%
≈88% ≈76%

≈69%
≈67%

Window (Hours/SDEs)

A
vg

T
im

e
(i
n
m
in
u
te
s)

RTEC inc

RTEC

(b) Total recognition time (10%)

1h/74K 2h/151K 4h/315K 8h/671K 16h/1414K
0

5

10

15

20

25

30

35

40

45

≈83%
≈89%

≈71%

≈60%
≈57%

Window (Hours/SDEs)

A
vg

T
im

e
(i
n
m
in
u
te
s)

RTEC inc

RTEC

(c) Total recognition time (20%)

1h/56K 2h/118K 4h/262K 8h/601K 16h/1340K
0

5

10

15

20

25

30

35

40

45

≈81% ≈89%
≈64%

≈51%
≈47%

Window (Hours/SDEs)

A
vg

T
im

e
(i
n
m
in
u
te
s)

RTEC inc

RTEC

(d) Total recognition time (40%)

1h/21K 2h/52K 4h/154K 8h/461K 16h/1191K
0

5

10

15

20

25

30

35

40

45

≈66% ≈83%
≈51%

≈40%

≈36%

Window (Hours/SDEs)

A
vg

T
im

e
(i
n
m
in
u
te
s)

RTEC inc

RTEC

(e) Total recognition time (80%)

Figure 11: Results on the fleet management dataset (slide step of 1 hour). Each diagram
corresponds to a different amount of delayed SDEs (5%, 10%, 20%, 40%, 80%).

Figure 11 presents the results regarding recognition time, where the sliding window
varies from 1 to 16 hours and the slide step is constant and equal to 1 hour. Each diagram
corresponds to a different amount of delayed events. RTECinc outperforms RTEC in all
experiments. The performance improvement becomes more profound as the overlap be-
tween consecutive windows increases. Both RTEC and RTECinc exhibit variations in their
performance; as the number of delayed events increases the intervals of a fluent are more
susceptible to changes. Moreover, as the percentage of delayed events decreases it is more
probable for RTECinc to achieve performance gain.

6. Related Work

The goal of CER systems is to identify CEs of interest given as input a stream of time-
stamped SDEs, such as events coming from sensors of vessels or vehicles. In the literature,
numerous CER systems and languages have been proposed. See (Cugola & Margara, 2012;
Alevizos et al., 2017; Giatrakos et al., 2020) for three surveys. These systems differ in their
architectures, data models, pattern languages and processing mechanisms (Grez et al., 2019,
2020). For example, many CER methods are based on automata (Demers et al., 2007; Zhang
et al., 2014; Schultz-Møller et al., 2009; Apache FlinkCEP12). The automaton model is used

12. https://ci.apache.org/projects/flink/flink-docs-stable/dev/libs/cep.html

39

Tsilionis, Artikis, & Paliouras

to describe the semantics of the language as well as the recognition algorithm. Apart from
automata, some CER systems employ tree-based models (Liu et al., 2011; Mei & Madden,
2009). Again, tree-based formalisms are used for both modeling and pattern matching,
i.e. they may describe the event patterns and the applied recognition algorithm.

Logic-based approaches to CER have also been attracting considerable attention, since
they exhibit a formal, declarative semantics, and at the same time support efficient rea-
soning (Fern et al., 2002; Dousson & Maigat, 2007; Cugola & Margara, 2010; Paschke &
Bichler, 2008; Brandt et al., 2018). RTEC is a logic programming implementation of the
Event Calculus (Kowalski & Sergot, 1986), that has been used for CER in various applica-
tion domains, such as maritime situational awareness (Patroumpas et al., 2017; Pitsikalis
et al., 2019) and fleet management (Tsilionis et al., 2019b). The use of the Event Calcu-
lus facilitates considerably the development of succinct CE definitions by taking advantage
of the built-in representation of inertia, favors the interaction between CE developer and
domain expert and supports code maintenance. RTEC explicitly represents CE intervals
(unlike e.g. Dousson & Maigat, 2007; Cugola & Margara, 2010; Beck et al., 2018) and thus
avoids the related logical problems (Paschke, 2006). Furthermore, RTEC supports not only
complex temporal constraints, but also complex atemporal constraints, as well as reasoning
over background knowledge. This is in contrast to other CER systems proposed in the
literature (Arasu et al., 2006; Dousson & Maigat, 2007; Cugola & Margara, 2010; Anicic
et al., 2012). Moreover, and in contrast to state-of-the-art recognition systems, such as the
Esper13 engine and SASE14 (Zhang et al., 2014), RTEC can naturally express hierarchi-
cal knowledge by means of well-structured specifications, and consequently employ caching
techniques to avoid unnecessary re-computations.

Concerning the Event Calculus literature, a key feature of RTEC is that it includes a
windowing technique. No other Event Calculus system (including Chittaro & Montanari,
1996; Cervesato & Montanari, 2000; Miller & Shanahan, 2002; Paschke & Bichler, 2008; Lee
& Palla, 2012; Montali et al., 2013) ‘forgets’ or represents concisely the data stream history.
Another feature of RTEC is the ability to deal with out-of-order and/or retracted SDE
streams through its windowing mechanism. The processing of events under the assumption
that the stream is temporally sorted is a serious limitation of several other CER systems
(Gyllstrom et al., 2006; Cugola & Margara, 2010, 2012; Dindar et al., 2011; Li et al., 2011;
Beck et al., 2018), since they cannot update or recognize new CEs as a result of delayed
arrival or retraction of SDEs. One limitation of RTEC is the computation from scratch
strategy, which results to inefficiencies. In this work, we presented an incremental version
of RTEC, i.e. RTECinc , that overcomes this issue.

The techniques presented for incremental reasoning are based on the incremental main-
tenance of materialised views in deductive databases. A materialised view in a deductive
database is the process of computing the effects of explicit facts on rules of a program and
storing the result (Gupta et al., 1993; Motik et al., 2019). Explicit facts along with the
implicit facts derived from the rules form the knowledge base of the database. Explicit facts
can be seen as the SDEs that are the input in a CER system. The explicit facts can be
updated through additions or deletions and thus, a new materialisation has to be produced.
However, the update of explicit facts may or may not affect the inferences produced after

13. http://www.espertech.com/esper/
14. http://sase.cs.umass.edu//

40

Incremental Event Calculus for Run-Time Reasoning

rule evaluation. The goal of incremental maintenance is to compute the new materialisa-
tion, using the updates and the state of the database before the updates. The result is
the minimization of the overall cost. In order for this operation to be efficient, incremental
maintenance has to detect and deal only with those rule instances that require update.
Notice that incremental materialisation is not always preferable over materialisation from
scratch. Consider, for example, the case in which large amounts of explicit facts are inserted
and deleted from the database (Motik et al., 2019; Gupta et al., 1993).

An update may cause a rule that fired before the update to stop firing or vice versa.
The changes in the inferences induced by the updates have to be applied to the old ma-
terialization, in order to produce the new one. Moreover, the changes introduced by the
updates are expressed as rules, i.e. rewritings of the original rules of the program capturing
the difference between consecutive materialisations. In the literature, they are called delta
rules and in Section 3, based on an initiatedAt rule, we provide the delta rules that compute
the changes that have to be made in the initiation points of a fluent. Different incremental
maintenance techniques have been proposed for the evaluation of the delta rules.

Ceri and Widom (1991) have presented a technique for maintaining views in relational
databases with the use of production rules (similar to the delta rules). The rewriting
technique has also been used to show that a recursive relation can be expressed as a non-
recursive first-order query with respect to insertions (Dong & Topor, 1992; Dong & Su,
1994; Dong et al., 1995). Dong and Su (1995) discuss non-recursive methods to update the
transitive closure of various graphs with respect to deletions and insertions. However, none
of these approaches handles negation.

Another approach towards incremental maintenance is the counting algorithm (Gupta
et al., 1993; Motik et al., 2019). In counting, every fact (explicit or implicit) is associated
with a counter that denotes the number of times it has been derived. The counter is stored
in the materialised view. When an update takes place, the counting algorithm uses the
changes made to the explicit facts, as well as the previous state of the materialisation, in
order to compute the changes that have to be made in the inferences. These changes are
reflected in the counter of each fact. When a counter becomes zero the fact must be deleted
from the database. On the other hand, when the counter is positive, the fact must remain
or be inserted in the view. The limitations of the counting algorithm are the inability to
handle recursive rules and the potential memory overhead caused by storing the counters
(Hu et al., 2018; Motik et al., 2019).

The Delete/Rederive (DRed) (Gupta et al., 1993; Motik et al., 2019) algorithm is a
different approach that deals with recursion and does not depend on additional information,
in order to decide if a fact has to be removed from or be inserted in the view. DRed first
‘over-deletes’ all implicit facts that depend on updated facts, that is, it evaluates all rules
whose body contains an updated fact. This is called the over-deletion step. Then, it
adopts a re-derivation step, during which the algorithm tries to find alternative derivations
for each deleted fact. The body of each rule, whose head can be matched to the deleted
fact, is evaluated over the new materialisation and if the evaluation succeeds the fact is
inserted again to the view. The re-derivation step thus introduces a form of redundancy.
The counting algorithm avoids this inefficiency since the counter’s value determines the
presence of a fact in the view (Hu et al., 2018; Motik et al., 2019).

41

Tsilionis, Artikis, & Paliouras

In approaches where duplicate semantics (i.e. storing a derived fact as many times as it is
inferred) is not desired, as in the case of RTEC, the counting algorithm, in combination with
stratum by stratum evaluation, is preferred over DRed (Motik et al., 2019). The counter
of a predicate denotes how many times the fact is derived within a stratum. Predicates of
higher strata that depend on it, do not need to be evaluated as many times as the value of
the counter, but only if the counter has value 1 or 0, that is, if it exists or not in the view.
In this manner duplicate elimination, which is an expensive operation, can be achieved at
little or no extra cost (Gupta et al., 1993). Finally, counting and DRed can handle negation
in the body literals of a rule (Motik et al., 2019). Negation in rule bodies is very important
in CER since the absence of an event may lead to the firing of the rule. Additionally, during
updates the delayed arrival of an event may lead to the deletion of a rule derivation.

Motik et al. (2015) presented the Backward/Forward (BF) algorithm, which in certain
cases overcomes the redundancy introduced during the re-derivation step of DRed. If a fact
is considered for deletion, BF searches for alternative derivations and only if one cannot
be found it proceeds with the deletion. Hu et al. (2018) proposed two hybrid approaches,
combining DRed and BF with counting. DRed with counting associates with each fact
two counters, one for the non-recursive and one for the recursive rules. A fact is never
over-deleted if its non-recursive counter is positive, while if this counter equals to zero the
recursive counter must also equals to zero in order for the fact to be removed from the
view. If the recursive counter differs from zero the fact remains in the view. Thus, the re-
derivation step is replaced with a simple check at the recursive counter. In order to reduce
the amount of time spent in discovering alternative derivations of a fact, BF with counting
associates with each fact a non-recursive counter. Only if the non-recursive counter equals
to zero it evaluates recursive rules to examine if the fact still holds. In the presence of
a lot of recursive rules BF with counting is the preferred choice since it finds alternative
derivations and the cost of over-deletion is reduced. However, when the number of recursive
rules is small, over-deletion favors computation and thus, DRed with counting is the best
choice. Notice that in the absence of recursive rules DRed with counting is identical to the
original counting algorithm. An improvement of DRed with counting, regarding recursive
rules, can be found in Hu et al. (2019).

All the approaches presented above refer to databases which are usually static and do not
undergo great changes. Our work transfers these ideas to a streaming environment, which
is dynamic in nature and the underlying facts, i.e. SDEs, are constantly changing. Query
answering in streaming environments needs to be fast and make use of the available limited
resources. Stream management systems achieve this by employing window mechanisms that
restrict the analysis in a finite part of the stream. Our method, RTECinc , takes advantage
of the window mechanism of RTEC, as well as its ability to handle temporal reasoning,
and applies incremental maintenance techniques in order to deal with out-of-order events.
Additionally, the logic programs used in our experimental evaluation contain many rules
and thus RTECinc supports multi-query answering. The ideas of DRed and rewriting of
rules have been implemented in a stream reasoning framework by Barbieri et al. (2010).
These authors treat insertions with the use of incremental maintenance rules. However,
they do not support negation in their rules, they consider the stream temporally sorted
and their logic program consists only of one rule. Another interesting stream reasoning
approach that is based on Temporal Datalog is proposed by Ronca et al. (2018). In this

42

Incremental Event Calculus for Run-Time Reasoning

case, a window construct is presented, that forgets old and accepts new input only if the
stream is temporally sorted. Furthermore, negation is not supported.

DBToaster is a method that performs Higher-Order incremental view maintenance,
meaning that it does not store only the result of the query but also stores the result of
subqueries (Koch et al., 2014). This way it achieves considerable speed-ups in updating a
materialisation compared to the methods outlined above but in the cost of increased mem-
ory consumption. In streaming environments where there are limited resources and near
real-time analysis is required, this is prohibitive. Idris et al. (2019) developed a method
that maintains an indexing structure that can produce through constant delay enumeration
the database materialisation without the need to store the answer of the query and the
results of its subqueries. Furthermore, depending on the type of the query it achieves fast
updating times of the materialised view. This approach is very efficient but the experimen-
tal evaluation always concerns the processing of a single query. Therefore, it is not clear
how it can address large (hierarchical) knowledge bases.

A work that is closely related to ours, in the sense that it concerns the Event Calculus
and the minimization of redundant interval computations, is the Cached Event Calculus
(CEC) (Chittaro & Montanari, 1996). A key difference between our approach and CEC is
that we propagate changes stratum by stratum, as opposed to sequentially propagating the
effects of individual facts. Therefore, RTECinc could scale to the datasets presented in the
previous section, while CEC could not.

The abundance of sensors that transmit data in high rates in the recent years has
also led to the development of distributed event-based systems. Mutschler and Philippsen
(2014) propose a hybrid method that combines buffering and speculative techniques to
deal with out-of-order event arrival in distributed environments. This method concerns a
middleware that is responsible for sending the input to the event detectors and is blind to
the recognition algorithm used by event detectors. A distributed materialisation of Datalog
rules is presented in (Ajileye et al., 2019) where dynamic data exchange reduces the network
communication. This is an interesting approach that does not consider, however, negation
and incremental materialisation.

7. Summary and Future Work

We presented RTECinc , an incremental version of the Event Calculus for Run-Time rea-
soning. RTECinc is a formal computational framework for incremental event recognition
which deals efficiently with the delayed arrival and retraction of SDEs. Using techniques
reminiscent of the incremental maintenance of deductive databases, RTECinc avoids unnec-
essary calculations and improves performance. Our empirical evaluation on big synthetic
and real datasets from the fields of maritime situational awareness and fleet management
demonstrated the effectiveness of the incremental procedure. Our intention is to compare
experimentally the two methods in other application domains where the granularity of time
is completely different. Furthermore, we intend to compare our incremental procedure with
other state-of-the-art frameworks. Finally, besides devising optimisations that can boost
performance, such as distributed incremental reasoning, we would like to extend our method
in order to handle recursive definitions and events with delayed effects, which are necessary
in various applications (Pitsikalis et al., 2019).

43

Tsilionis, Artikis, & Paliouras

Acknowledgments

This work was funded partly by the EU H2020 Track & Know “Big Data for Mobility
Tracking Knowledge Extraction in Urban Areas” and partly by the EU H2020 INFORE
“Interactive Extreme-Scale Analytics and Forecasting” projects.

Appendix

We present the built-in axioms of RTEC ensuring that a fluent F may have at most one
value at each time-point, the derivations of the incremental evaluation formulas concerning
statically determined fluents, as well the complete tables expressing the comparison of RTEC
and RTECinc regarding the three interval manipulation constructs.

Built-in Axioms Concerning Fluent-Value Pairs

Consider the axioms below:

broken(F=V, Ts, T)←
terminatedAt(F=V, Tf), Ts < Tf ≤ T.

(a)

broken(F=V1, Ts, T)←
initiatedAt(F=V2, Tf), Ts < Tf ≤ T, V1 6= V2.

(b)

broken(F=V, Ts, T) represents that a maximal interval starting at Ts for which F=V holds
continuously is terminated at some time Tf such that Ts < Tf ≤ T . According to rule (a),
F=V is ‘broken’ if it is terminated. According to rule (b), if F=V2 is initiated at Tf then
effectively F=V1 is terminated at time Tf , for all other possible values V1 of F . Rule (b)
ensures therefore that a fluent cannot have more than one value at any time. We do not
insist that a fluent must have a value at every time-point. There is a difference between
initiating a Boolean fluent F=false and terminating F=true: the former implies, but is not
implied by the latter.

Proofs of the Incremental Evaluation of Interval Manipulation Constructs

We present the derivations of the incremental evaluation formulas of RTECinc concerning
the interval manipulation constructs. Table 16 displays a list of properties (Bassiouni et al.,
1993) concerning sets of intervals, that are used in the derivations (property numbers are
displayed below the horizontal curly brackets in the derivations).

Table 16: Properties of temporal sets. Capital letters represent sets of time intervals.

] Property

1
(a) A ∪T B = B ∪T A
(b) A ∩T B = B ∩T A

44

Incremental Event Calculus for Run-Time Reasoning

2
(a) A ∪T (B ∩T C) = (A ∪T B) ∩T (A ∪T C)

(b) A ∩T (B ∪T C) = (A ∩T B) ∪T (A ∩T C)

3
(a) A ∪T (A ∩T B) = A

(b) A ∩T (A ∪T B) = A

4 A ∩T B=A \T (A \T B)

5
A \T (B ∪T C) = (A ∪T C) \T (B ∪T C) =

(A \T B) \T C = (A \T C) \T B

6
(a) (A ∪T B) \T C = (A \T C) ∪T (B \T C)

(b) (A ∩T B) \T C = (A \T C) ∩T (B \T C)

7 A \T (B \T C) = (A ∩T C) ∪T (A \T B)

8 (A \T B) ∪T C = (A ∪T C) \T (B \T C)

9 (A \T B) ∩T C = (A ∩T C) \T B = (A ∩T C) \T (B ∩T C)

10
(a) A \T (B ∩T C) = (A \T B) ∪T (A \T C)

(b) A \T (B ∪T C) = (A \T B) ∩T (A \T C)

11
(a) (A \T B) ∪T A = A, (b) (A \T B) ∪T B = A ∪T B
(c) (A \T B) ∩T A = A \T B, (d) (A \T B) ∩T B = ∅

Derivation of Eq. (15) expressing the incremental evaluation of union all

I
Qi
A ∪T I

Qi
B =

[
(I

Qi−1

A \T I−A) ∪T I+A

]
︸ ︷︷ ︸

Eq. (12)

∪T
[
(I

Qi−1

B \T I−B) ∪T I+B

]
︸ ︷︷ ︸

Eq. (12)

=

(I
Qi−1

B \T I−B) ∪T (I
Qi−1

A \T I−A) ∪T (I+A ∪T I+B)︸ ︷︷ ︸
Pr.1a

=

(I
Qi−1

B \T I−B) ∪T
[[

I
Qi−1

A ∩T (I
Qi−1

A ∪T I
Qi−1

B)
]

︸ ︷︷ ︸
Pr.3b

\T I−A

]
∪T (I+A ∪T I+B)=

(I
Qi−1

B \T I−B) ∪T
[
I
Qi−1

A ∩T
[
(I

Qi−1

A ∪T I
Qi−1

B) \T I−A

]]
︸ ︷︷ ︸

Pr.9

∪T (I+A ∪T I+B)=

45

Tsilionis, Artikis, & Paliouras

[[
I
Qi−1

A ∪T (I
Qi−1

B \T I−B)

]
∩T
[
(I

Qi−1

B \T I−B) ∪T
[
(I

Qi−1

A ∪T I
Qi−1

B) \T I−A

]]]
︸ ︷︷ ︸

Pr.2a

∪T (I+A ∪T I+B)=

[[
I
Qi−1

A ∪T (I
Qi−1

A \T I−B)︸ ︷︷ ︸
Pr.11a

∪T (I
Qi−1

B \T I−B)

]
∩T
[[[

(I
Qi−1

A ∪T I
Qi−1

B) ∩T I
Qi−1

B

]︸ ︷︷ ︸
Pr.3b

\T I−B

]
∪T
[
(I

Qi−1

A ∪T I
Qi−1

B) \T I−A

]]]
∪T (I+A ∪T I+B)=

[[
I
Qi−1

A ∪T
[
(I

Qi−1

A ∪T I
Qi−1

B) \T I−B

]
︸ ︷︷ ︸

Pr.6a

]
∩T
[[

(I
Qi−1

A ∪T I
Qi−1

B) ∩T (I
Qi−1

B \T I−B)
]

︸ ︷︷ ︸
Pr.9

∪T
[
(I

Qi−1

A ∪T I
Qi−1

B) \T I−A

]]]
∪T (I+A ∪T I+B)=

[[[
(I

Qi−1

A ∪T I
Qi−1

B) ∩T I
Qi−1

A

]
︸ ︷︷ ︸

Pr.3b

∪T
[
(I

Qi−1

A ∪T I
Qi−1

B) \T I−B

]]
∩T
[
(I

Qi−1

A ∪T I
Qi−1

B) \T
[
I−A \T (I

Qi−1

B \T I−B)
]]

︸ ︷︷ ︸
Pr.7

]
∪T (I+A ∪T I+B)=

[[
(I

Qi−1

A ∪T I
Qi−1

B) \T (I−B \T I
Qi−1

A)

]
︸ ︷︷ ︸

Pr.7

∩T
[
(I

Qi−1

A ∪T I
Qi−1

B) \T
[
I−A \T (I

Qi−1

B \T I−B)
]]]
∪T (I+A ∪T I+B)=

[
(I

Qi−1

A ∪T I
Qi−1

B) \T
[
(I−B \T I

Qi−1

A) ∪T
[
I−A \T (I

Qi−1

B \T I−B)
]]]

︸ ︷︷ ︸
Pr.10b

∪T (I+A ∪T I+B)=

[
(I

Qi−1

A ∪T I
Qi−1

B) \T
[
(I−B \T I

Qi−1

A) ∪T
[[

I−A ∩T (I−A ∪T I−B)
]︸ ︷︷ ︸

Pr.3b

\T (I
Qi−1

B \T I−B)
]]]
∪T (I+A ∪T I+B)=

[
(I

Qi−1

A ∪T I
Qi−1

B) \T
[
(I−B \T I

Qi−1

A) ∪T
[
I−A ∩T

[
(I−A ∪T I−B) \T (I

Qi−1

B \T I−B)
]]

︸ ︷︷ ︸
Pr.9

]]
∪T (I+A ∪T I+B)=

[
(I

Qi−1

A ∪T I
Qi−1

B) \T
[
(I−B \T I

Qi−1

A) ∪T
[
(I−A \T I

Qi−1

B) ∪T I−A

]
︸ ︷︷ ︸

Pr.11a

∩T
[
(I−A \T I

Qi−1

B) ∪T I−B

]
︸ ︷︷ ︸

Pr.8

]]
∪T (I+A ∪T I+B)=

[
(I

Qi−1

A ∪T I
Qi−1

B) \T
[
(I−B \T I

Qi−1

A) ∪T (I−A \T I
Qi−1

B) ∪T (I−A ∩T I−B)︸ ︷︷ ︸
Pr.2a

]]
∪T (I+A ∪T I+B)=

[
(I

Qi−1

A ∪T I
Qi−1

B) \T
[[

(I−A \T I
Qi−1

A) ∪T (I−B \T I
Qi−1

A) ∪T (I−A \T I
Qi−1

B) ∪T (I−B \T I
Qi−1

B)
]

︸ ︷︷ ︸
I
Qi−1
F

∩T I−
F

= I−
F
⇔I−

F
\T I

Qi−1
F

=∅

∪T (I−A ∩T I−B)

]]
∪T (I+A ∪T I+B)=

[
(I

Qi−1

A ∪T I
Qi−1

B) \T
[[

[(I−A ∪T I−B) \T I
Qi−1

A] ∪T [(I−A ∪T I−B) \T I
Qi−1

B]
]

︸ ︷︷ ︸
Pr.6a

∪T (I−A ∩T I−B)

]]
∪T (I+A ∪T I+B)=

[
(I

Qi−1

A ∪T I
Qi−1

B) \T
[[

(I−A ∪T I−B) \T (I
Qi−1

A ∩T I
Qi−1

B)
]

︸ ︷︷ ︸
Pr.10a

∪T (I−A ∩T I−B)

]]
∪T (I+A ∪T I+B)

46

Incremental Event Calculus for Run-Time Reasoning

Derivation of Eq. (19) expressing the incremental evaluation of intersect all

I
Qi
A ∩T I

Qi
B =

[
(I

Qi−1

A \T I−A) ∪T I+A

]
︸ ︷︷ ︸

Eq. (12)

∩T
[
(I

Qi−1

B \T I−B) ∪T I+B

]
︸ ︷︷ ︸

Eq. (12)

=

[
(I

Qi−1

A \T I−A) ∪T I+A

]
∩T
[
(I

Qi−1

B \T I−B) ∪T (I
Qi−1

A \T I−A) ∪T I+A

]
︸ ︷︷ ︸

Pr.3b

∩T
[
(I

Qi−1

B \T I−B) ∪T I+B)
]
∩T
[
(I

Qi−1

B \T I−B) ∪T (I
Qi−1

A \T I−A) ∪T I+B)
]

︸ ︷︷ ︸
Pr.3b

=

[
(I

Qi−1

A \T I−A) ∪T I+A

]
∩T
[
(I

Qi−1

B \T I−B) ∪T I+B)
]
∩T
[
(I

Qi−1

B \T I−B) ∪T (I
Qi−1

A \T I−A) ∪T I+A

]
∩T
[
(I

Qi−1

B \T I−B) ∪T (I
Qi−1

A \T I−A) ∪T I+B)
]

︸ ︷︷ ︸
Pr.1b

=

[[
(I

Qi−1

A \T I−A) ∪T I+A ∪T (I+A ∩T I+B)︸ ︷︷ ︸
Pr.3a

]
∩T
[
(I

Qi−1

B \T I−B) ∪T I+B ∪T (I+A ∩T I+B)︸ ︷︷ ︸
Pr.3a

]
∩T
[
(I

Qi−1

B \T I−B) ∪T (I
Qi−1

A \T I−A) ∪T (I+A ∩T I+B)
]

︸ ︷︷ ︸
Pr.2a

]
=

[[
(I

Qi−1

A \T I−A) ∪T I+A

]
∩T
[
(I

Qi−1

B \T I−B) ∪T I+B

]
∩T
[
(I

Qi−1

B \T I−B) ∪T (I
Qi−1

A \T I−A)
]]
∪T (I+A ∩T I+B)︸ ︷︷ ︸

Pr.2a

=

[[
(I

Qi−1

A \T I−A) ∪T
[
I+B ∩T (I

Qi−1

A \T I−A)
]

︸ ︷︷ ︸
Pr.3a

∪T I+A

]
∩T
[
(I

Qi−1

B \T I−B) ∪T I+B

]
∩T
[
(I

Qi−1

B \T I−B) ∪T (I
Qi−1

A \T I−A)
]]
∪T (I+A ∩T I+B)=

[[
(I

Qi−1

A \T I−A) ∪T I+A ∪T
[
I+B ∩T (I

Qi−1

A \T I−A)
]]

︸ ︷︷ ︸
Pr.1a

∩T
[
(I

Qi−1

B \T I−B) ∪T
[
I+B ∩T (I

Qi−1

A \T I−A)
]]

︸ ︷︷ ︸
Pr.2a

]
∪T (I+A ∩T I+B)=

[[
(I

Qi−1

A \T I−A) ∪T I+A

]
∩T (I

Qi−1

B \T I−B)

]
∪T
[
I+B ∩T (I

Qi−1

A \T I−A)
]

︸ ︷︷ ︸
Pr.2a

∪T (I+A ∩T I+B)=

[
(I

Qi−1

A \T I−A) ∩T (I
Qi−1

B \T I−B)

]
∪T
[
I+A ∩T (I

Qi−1

B \T I−B)
]

︸ ︷︷ ︸
Pr.2b

∪T
[
I+B ∩T (I

Qi−1

A \T I−A)
]
∪T (I+A ∩T I+B)=

[
(I

Qi−1

A \T I−A) ∩T (I
Qi−1

B \T I−B)

]
∪T
[
I+A ∩T (I

Qi−1

B \T I−B)
]
∪T
[
I+B ∩T (I

Qi−1

A \T I−A)
]
∪T (I+A ∩T I+B) ∪T (I+A ∩T I+B)︸ ︷︷ ︸

IF∪T IF = IF

=

[
(I

Qi−1

A \T I−A) ∩T (I
Qi−1

B \T I−B)

]
∪T
[[

I+B ∩T (I
Qi−1

A \T I−A)
]
∪T (I+A ∩T I+B)

]
∪T
[[

I+A ∩T (I
Qi−1

B \T I−B)
]
∪T (I+A ∩T I+B)

]
︸ ︷︷ ︸

Pr.1a

=

[
(I

Qi−1

A \T I−A) ∩T (I
Qi−1

B \T I−B)

]
∪T
[[

I
Qi−1

A ∩T (I+B \T I−A)︸ ︷︷ ︸
Pr.9

]
∪T (I+A ∩T I+B)

]
∪T
[[

I
Qi−1

B ∩T (I+A \T I−B)︸ ︷︷ ︸
Pr.9

]
∪T (I+A ∩T I+B)

]
=

[
(I

Qi−1

A \T I−A) ∩T (I
Qi−1

B \T I−B)

]
∪T
[[

I
Qi−1

A ∩T I+B ∩T (I+B \T I−A)︸ ︷︷ ︸
Pr.11c

]
∪T (I+A ∩T I+B)

]
∪T
[[

I
Qi−1

B ∩T I+A ∩T (I+A \T I−B)︸ ︷︷ ︸
Pr.11c

]
∪T (I+A ∩T I+B)

]
=

[
(I

Qi−1

A \T I−A) ∩T (I
Qi−1

B \T I−B)

]
∪T
[[

I
Qi−1

A ∩T (I+B \T I
Qi−1

B)︸ ︷︷ ︸
I
Qi−1
F

∩T I+
F

=∅

∩T (I+B \T I−A)
]
∪T (I+A ∩T I+B)

]
∪T
[[

I
Qi−1

B ∩T (I+A \T I
Qi−1

A)︸ ︷︷ ︸
I
Qi−1
F

∩T I+
F

=∅

∩T (I+A \T I−B)
]
∪T (I+A ∩T I+B)

]
=

47

Tsilionis, Artikis, & Paliouras

[
(I

Qi−1

A \T I−A) ∩T (I
Qi−1

B \T I−B)

]
∪T
[[

I
Qi−1

A ∩T [I+B \T (I
Qi−1

B ∪T I−A)]︸ ︷︷ ︸
Pr.10b

]
∪T (I+A ∩T I+B)

]
∪T
[[

I
Qi−1

B ∩T [I+A \T (I
Qi−1

A ∪T I−B)]︸ ︷︷ ︸
Pr.10b

]
∪T (I+A ∩T I+B)

]
=

[
(I

Qi−1

A \T I−A) ∩T I
Qi−1

B ∩T (I
Qi−1

B \T I−B) ∩T I
Qi−1

A

]
︸ ︷︷ ︸

Pr.11c

]
∪T
[[

I+B ∩T [I
Qi−1

A \T (I
Qi−1

B ∪T I−A)]︸ ︷︷ ︸
Pr.9

]
∪T (I+A ∩T I+B)

]
∪T
[[

I+A ∩T [I
Qi−1

B \T (I
Qi−1

A ∪T I−B)]
]

︸ ︷︷ ︸
Pr.9

∪T (I+A ∩T I+B)

]
=

[[
(I

Qi−1

A ∩T I
Qi−1

B) \T I−A

]
︸ ︷︷ ︸

Pr.9

∩T
[
(I

Qi−1

A ∩T I
Qi−1

B) \T I−B

]
︸ ︷︷ ︸

Pr.9

]
∪T
[
I+B ∩T

[[
I
Qi−1

A \T (I
Qi−1

B ∪T I−A)
]
∪T I+A

]]
︸ ︷︷ ︸

Pr.2b

∪T
[
I+A ∩T

[[
I
Qi−1

B \T (I
Qi−1

A ∪T I−B)
]
∪T I+B

]]
︸ ︷︷ ︸

Pr.2b

=

[
(I

Qi−1

A ∩T I
Qi−1

B) \T (I−A ∪T I−B)︸ ︷︷ ︸
Pr.10b

]
∪T
[
I+B ∩T

[[
(I

Qi−1

A \T I
Qi−1

B) \T I−A
]︸ ︷︷ ︸

Pr.5

∪T I+A

]]
∪T
[
I+A ∩T

[[
(I

Qi−1

B \T I
Qi−1

A) \T I−B
]︸ ︷︷ ︸

Pr.5

∪T I+B

]]
=

[
(I

Qi−1

A ∩T I
Qi−1

B) \T (I−A ∪T I−B)

]
∪T
[
I+B ∩T

[
(I

Qi−1

A\TB︸ ︷︷ ︸
I
Qi−1
A\T B

=(I
Qi−1
A

\T I
Qi−1
B

)

\T I−A) ∪T I+A

]]
∪T
[
I+A ∩T

[
(I

Qi−1

B\TA︸ ︷︷ ︸
I
Qi−1
B\T A

=(I
Qi−1
B

\T I
Qi−1
A

)

\T I−B) ∪T I+B

]]

Derivation of Eq. (23) expressing the incremental evaluation of
relative complement all

I
Qi
A \T I

Qi
B =

[
(I

Qi−1

A \T I−A) ∪T I+A

]
︸ ︷︷ ︸

Eq. (12)

\T
[
(I

Qi−1

B \T I−B) ∪T I+B

]
︸ ︷︷ ︸

Eq. (12)

=

[[
(I

Qi−1

A \T I−A) ∪ I+A

]
∩T
[
(I

Qi−1

A \T I−A) ∪T I+A ∪T I−B

]]
︸ ︷︷ ︸

3b

\T
[
(I

Qi−1

B \T I−B) ∪T I+B

]
=

[
(I

Qi−1

A \T I−A) ∪ I+A

]
∩T
[[

(I
Qi−1

A \T I−A) ∪T I+A ∪T I−B

]
\T
[
(I

Qi−1

B \T I−B) ∪T I+B

]]
︸ ︷︷ ︸

Pr.9

=

[
(I

Qi−1

A \T I−A) ∪ I+A ∪T
[
I+A \T

[
(I

Qi−1

B \T I−B) ∪T I+B
]]

︸ ︷︷ ︸
Pr.11a

]
∩T
[[[

(I
Qi−1

A \T I−A) ∪T I−B
]
\T
[
(I

Qi−1

B \T I−B) ∪T I+B
]]
∪T
[
I+A \T

[
(I

Qi−1

B \T I−B) ∪T I+B
]]]

︸ ︷︷ ︸
Pr.6a

=

[[
(I

Qi−1

A \T I−A) ∪ I+A

]
∩T
[[
(I

Qi−1

A \T I−A) ∪T I−B
]
\T
[
(I

Qi−1

B \T I−B) ∪T I+B
]]]
∪T
[
I+A \T

[
(I

Qi−1

B \T I−B) ∪T I+B
]]

︸ ︷︷ ︸
Pr.2a

=

[[
(I

Qi−1

A \T I−A) ∪ I+A

]
∩T
[[
(I

Qi−1

A \T I−A) ∪T I−B
]
\T
[
(I

Qi−1

B \T I−B) ∪T (I+B \T I−B)︸ ︷︷ ︸
I−
F
∩T I+

F
=∅

]]]
∪T
[
I+A \T

[
(I

Qi−1

B \T I−B) ∪T I+B
]]

=

[[
(I

Qi−1

A \T I−A) ∪ I+A

]
∩T
[[
(I

Qi−1

A \T I−A) ∪T I−B
]
\T
[
(I

Qi−1

B ∪T I+B) \T I−B
]︸ ︷︷ ︸

Pr.6a

]]
∪T
[
I+A \T

[
(I

Qi−1

B \T I−B) ∪T I+B
]]

=

[[[
(I

Qi−1

A \T I−A) \T (I
Qi−1

B ∪T I+B)
]
∪T (I

Qi−1

A \T I−A)︸ ︷︷ ︸
Pr.11a

∪T I+A

]
∩T
[[
(I

Qi−1

A \T I−A) \T (I
Qi−1

B ∪T I+B)
]
∪T I−B

]
︸ ︷︷ ︸

Pr.8

]
∪T
[
I+A \T

[
(I

Qi−1

B \T I−B) ∪T I+B
]]

=

48

Incremental Event Calculus for Run-Time Reasoning

[
(I

Qi−1

A \T I−A) \T (I
Qi−1

B ∪T I+B)

]
∪T
[[

(I
Qi−1

A \T I−A) ∪T I+A

]
∩T I−B

]
︸ ︷︷ ︸

Pr.2a

∪T
[
I+A \T

[
(I

Qi−1

B \T I−B) ∪T I+B

]]
=

[
(I

Qi−1

A \T I−A) \T (I
Qi−1

B ∪T I+B)

]
∪T
[
I+A \T

[
(I

Qi−1

B \T I−B) ∪T I+B

]]
∪T
[[

(I
Qi−1

A \T I−A) ∪T I+A

]
∩T I−B

]
︸ ︷︷ ︸

Pr.1a

=

[
(I

Qi−1

A \T I−A) \T (I
Qi−1

B ∪T I+B)

]
∪T
[[

(I+A ∩T I
Qi−1

A)︸ ︷︷ ︸
I
Qi−1
F

∩T I+
F

=∅

\T I+B

]
∪T
[
I+A \T

[
(I

Qi−1

B \T I−B) ∪T I+B
]]]
∪T
[[

(I
Qi−1

A \T I−A) ∪T I+A

]
∩T I−B

]
=

[
(I

Qi−1

A \T I−A) \T (I
Qi−1

B ∪T I+B)

]
∪T
[[

I+A ∩T (I
Qi−1

A \T I+B)
]

︸ ︷︷ ︸
Pr.9

∪T
[
I+A \T

[
(I

Qi−1

B \T I−B) ∪T I+B
]]]
∪T
[[

(I
Qi−1

A \T I−A) ∩T I−B

]
∪T
[
I+A ∩T I−B

]]
︸ ︷︷ ︸

Pr.2b

=

[
(I

Qi−1

A \T I−A) \T (I
Qi−1

B ∪T I+B)

]
∪T
[
I+A \T

[[
(I

Qi−1

B \T I−B) ∪T I+B
]
\T
[
I
Qi−1

A \T I+B
]]]

︸ ︷︷ ︸
Pr.7

∪T
[[

(I
Qi−1

A \T I−A) ∩T I
Qi−1

B ∩T I−B︸ ︷︷ ︸
I
Qi−1
F

∩T I−
F

= I−
F

]
∪T
[
I+A ∩T I−B

]]
=

[
(I

Qi−1

A \T I−A) \T (I
Qi−1

B ∪T I+B)

]
∪T
[
I+A \T

[[
(I

Qi−1

B \T I−B) \T I
Qi−1

A

]
∪T I+B

]
︸ ︷︷ ︸

Pr.8

]
∪T
[
I−B ∩T

[[
(I

Qi−1

A \T I−A) ∩T I
Qi−1

B

]
∪T I+A

]]
︸ ︷︷ ︸

Pr.2b

=

[
(I

Qi−1

A \T I
Qi−1

B) \T (I−A ∪T I+B)

]
︸ ︷︷ ︸

Pr.5

∪T
[
I+A \T

[[
(I

Qi−1

B \T I
Qi−1

A) \T I−B
]︸ ︷︷ ︸

Pr.5

∪T I+B

]]
∪T
[
I−B ∩T

[[
(I

Qi−1

A ∩T I
Qi−1

B) \T I−A
]︸ ︷︷ ︸

Pr.9

∪T I+A

]]
=

[
(I

Qi−1

A \T I
Qi−1

B) \T (I−A ∪T I+B)

]
∪T
[
I+A \T

[
(I

Qi−1

B\TA︸ ︷︷ ︸
I
Qi−1
B\T A

= I
Qi−1
B

\T I
Qi−1
A

\T I−B) ∪T I+B

]]
∪T
[
I−B ∩T

[
(I

Qi−1

A∩TB︸ ︷︷ ︸
I
Qi−1
A∩T B

= I
Qi−1
A

∩T I
Qi−1
B

\T I−A) ∪T I+A

]]

49

Tsilionis, Artikis, & Paliouras

Complete Comparison for Statically Determined Fluents.

Table 17: The 16 different cases of union all according to the deletion and insertion sets of
the two body fluents. Bold lines highlight the cases in which RTECinc outperforms RTEC.

] |I−A | |I
+
A | |I

−
B | |I

+
B | RTEC vs RTECinc

1 6= 0 6= 0 6= 0 6= 0 |IQi−1

A∪TB| ≮ |I
Qi−1

AB | − 3
2 |I

Qi−1

A∩TB| − 5|I−+AB |

2 0 6= 0 6= 0 6= 0 |IQi−1

A∪TB| ≮ |I
Qi−1

AB | − 3
2 |I

Qi−1

A∩TB| − 2|I−+AB |

3 6= 0 0 6= 0 6= 0 |IQi−1

A∪TB| ≮ |I
Qi−1

AB | − 3
2 |I

Qi−1

A∩TB| − 4|I−+AB |

4 0 0 6= 0 6= 0 |IQi−1

A∪TB| ≮ |I
Qi−1

AB | − 3
2 |I

Qi−1

A∩TB| − |I−+AB |

5 6= 0 6= 0 0 6= 0 |IQi−1

A∪TB| ≮ |I
Qi−1

AB | − 3
2 |I

Qi−1

A∩TB| − 2|I−+AB |

6 0 6= 0 0 6= 0 |IQi−1

A∪TB| < 2|IQi−1

AB | − 2|I−+
AB |

7 6= 0 0 0 6= 0 |IQi−1

A∪TB| ≮ |I
Qi−1

AB | − 3
2 |I

Qi−1

A∩TB| − |I−+AB |

8 0 0 0 6= 0 |IQi−1

A∪TB| < 2|IQi−1

AB |

9 6= 0 6= 0 6= 0 0 |IQi−1

A∪TB| ≮ |I
Qi−1

AB | − 3
2 |I

Qi−1

A∩TB| − 4|I−+AB |

10 0 6= 0 6= 0 0 |IQi−1

A∪TB| ≮ |I
Qi−1

AB | − 3
2 |I

Qi−1

A∩TB| − |I−+AB |

11 6= 0 0 6= 0 0 |IQi−1

A∪TB| ≮ 2|IQi−1

AB | − 2|IQi−1

A∩TB| − 3|I−+AB |

12 0 0 6= 0 0 |IQi−1

A∪TB| ≮ 2|IQi−1

AB | − 2|IQi−1

A∩TB| −
|I−+

AB |
2

13 6= 0 6= 0 0 0 |IQi−1

A∪TB| ≮ |I
Qi−1

AB | − 3
2 |I

Qi−1

A∩TB| − |I−+AB |

14 0 6= 0 0 0 |IQi−1

A∪TB| < 2|IQi−1

AB |

15 6= 0 0 0 0 |IQi−1

A∪TB| ≮ 2|IQi−1

AB | − 2|IQi−1

A∩TB| − |I−+AB |

16 0 0 0 0 >

50

Incremental Event Calculus for Run-Time Reasoning

Table 18: The 16 different cases of intersect all according to the deletion and insertion sets of
the two body fluents. Bold lines highlight the cases in which RTECinc outperforms RTEC.

] |I−A | |I
+
A | |I

−
B | |I

+
B | RTEC vs RTECinc

1 6= 0 6= 0 6= 0 6= 0 |IQi−1

A∩TB| ≮ |I
Qi−1

AB | − 5|IQi−1

A\TB| − 19
2 |I−+AB |

2 0 6= 0 6= 0 6= 0 |IQi−1

A∩TB| ≮ |I
Qi−1

AB | − 9
2 |I

Qi−1

A\TB| − 6|I−+AB |

3 6= 0 0 6= 0 6= 0 |IQi−1

A∩TB| < |I
Qi−1

AB | −
3
2
|IQi−1

A\TB| − 2|I−+
AB |

4 0 0 6= 0 6= 0 |IQi−1

A∩TB| < |I
Qi−1

AB | − |I
Qi−1

A\TB|

5 6= 0 6= 0 0 6= 0 |IQi−1

A∩TB| ≮ |I
Qi−1

AB | − 5
2 |I

Qi−1

A\TB| − 6|I−+AB |

6 0 6= 0 0 6= 0 |IQi−1

A∩TB| < 2|IQi−1

AB | − 8|IQi−1

A\TB| −
7
2
|I−+

AB |

7 6= 0 0 0 6= 0 |IQi−1

A∩TB| < |I
Qi−1

AB | −
3
2
|IQi−1

A\TB| −
3
2
|I−+

AB |

8 0 0 0 6= 0 |IQi−1

A∩TB| < 2|IQi−1

AB | − 2|IQi−1

A\TB|

9 6= 0 6= 0 6= 0 0 |IQi−1

A∩TB| < |I
Qi−1

AB | −
3
2
|IQi−1

A\TB| − 2|I−+
AB |

10 0 6= 0 6= 0 0 |IQi−1

A∩TB| < |I
Qi−1

AB | −
3
2
|IQi−1

A\TB| −
3
2
|I−+

AB |

11 6= 0 0 6= 0 0 |IQi−1

A∩TB| < 2|IQi−1

AB | − 2|I−+
AB |

12 0 0 6= 0 0 |IQi−1

A∩TB| < 2|IQi−1

AB |

13 6= 0 6= 0 0 0 |IQi−1

A∩TB| < |I
Qi−1

AB | − |I
Qi−1

A\TB|

14 0 6= 0 0 0 |IQi−1

A∩TB| < 2|IQi−1

AB | − 2|IQi−1

A\TB|

15 6= 0 0 0 0 |IQi−1

A∩TB| < 2|IQi−1

AB |

16 0 0 0 0 >

51

Tsilionis, Artikis, & Paliouras

Table 19: The 16 different cases of relative complement all according to the deletion and in-
sertion sets of the two body fluents. Bold lines highlight the cases in which RTECinc

outperforms RTEC.

] |I−A | |I
+
A | |I

−
B | |I

+
B | RTEC vs RTECinc

1 6= 0 6= 0 6= 0 6= 0 |IQi−1

A\TB| ≮ |I
Qi−1

AB | − 5
2(|IQi−1

B\TA|+ |I
Qi−1

A∩TB|)− 8|I−+AB |

2 0 6= 0 6= 0 6= 0 |IQi−1

A\TB| ≮ |I
Qi−1

AB | − 5
2 |I

Qi−1

B\TA| − 2|IQi−1

A∩TB| − 9
2 |I−+AB |

3 6= 0 0 6= 0 6= 0 |IQi−1

A\TB| < |I
Qi−1

AB | −
3
2
|IQi−1

A∩TB| −
5
2
|I−+

AB |

4 0 0 6= 0 6= 0 |IQi−1

A\TB| < |I
Qi−1

AB | − |I
Qi−1

A∩TB|

5 6= 0 6= 0 0 6= 0 |IQi−1

A\TB| < |I
Qi−1

AB | −
3
2
|IQi−1

B\TA| − 3|I−+
AB |

6 0 6= 0 0 6= 0 |IQi−1

A\TB| < |I
Qi−1

AB | −
3
2
|IQi−1

B\TA| − 2|I−+
AB |

7 6= 0 0 0 6= 0 |IQi−1

A\TB| < 2|IQi−1

AB | − 2|I−+
AB |

8 0 0 0 6= 0 |IQi−1

A\TB| < 2|IQi−1

AB |

9 6= 0 6= 0 6= 0 0 |IQi−1

A\TB| ≮ |I
Qi−1

AB | − 5
2 |I

Qi−1

A∩TB| − 2|IQi−1

B\TA| − 5|I−+AB |

10 0 6= 0 6= 0 0 |IQi−1

A\TB| ≮ 2|IQi−1

AB | − 4(|IQi−1

B\TA|+ |I
Qi−1

A∩TB|)− 5
2 |I−+AB |

11 6= 0 0 6= 0 0 |IQi−1

A\TB| < |I
Qi−1

AB | −
3
2
|IQi−1

A∩TB| −
3
2
|I−+

AB |

12 0 0 6= 0 0 |IQi−1

A\TB| < 2|IQi−1

AB | − 2|IQi−1

A∩TB|

13 6= 0 6= 0 0 0 |IQi−1

A\TB| < |I
Qi−1

AB | − |I
Qi−1

B\TA| −
|I−+

AB |
2

14 0 6= 0 0 0 |IQi−1

A\TB| < 2|IQi−1

AB | − 2|IQi−1

B\TB| −
|I−+

AB |
2

15 6= 0 0 0 0 |IQi−1

A\TB| < 2|IQi−1

AB |

16 0 0 0 0 >

52

Incremental Event Calculus for Run-Time Reasoning

References

Ajileye, T., Motik, B., & Horrocks, I. (2019). Datalog materialisation in distributed RDF
stores with dynamic data exchange. In The Semantic Web - ISWC 2019 - 18th In-
ternational Semantic Web Conference, Auckland, New Zealand, October 26-30, 2019,
Proceedings, Part I, pp. 21–37.

Alevizos, E., Skarlatidis, A., Artikis, A., & Paliouras, G. (2017). Probabilistic complex
event recognition: A survey. ACM Comput. Surv., 50 (5), 71:1–71:31.

Anicic, D., Rudolph, S., Fodor, P., & Stojanovic, N. (2012). Real-time complex event recog-
nition and reasoning - a logic programming approach. Applied Artificial Intelligence,
26 (1-2), 6–57.

Arasu, A., Babu, S., & Widom, J. (2006). The cql continuous query language: Semantic
foundations and query execution. The VLDB Journal, 15 (2), 121–142.

Artikis, A., Sergot, M. J., & Paliouras, G. (2015). An event calculus for event recognition.
IEEE Trans. Knowl. Data Eng., 27 (4), 895–908.

Barbieri, D. F., Braga, D., Ceri, S., Della Valle, E., & Grossniklaus, M. (2010). Incremental
reasoning on streams and rich background knowledge. In Aroyo, L., Antoniou, G.,
Hyvönen, E., ten Teije, A., Stuckenschmidt, H., Cabral, L., & Tudorache, T. (Eds.),
The Semantic Web: Research and Applications, pp. 1–15, Berlin, Heidelberg. Springer
Berlin Heidelberg.

Bassiouni, M., Llewellyn, M., & Mukherjee, A. (1993). Time-based operators for relational
algebra query languages. Computer Languages, 19 (4), 261 – 276.

Beck, H., Dao-Tran, M., & Eiter, T. (2018). LARS: A logic-based framework for analytic
reasoning over streams. Artif. Intell., 261, 16–70.

Brandt, S., Kalayci, E. G., Ryzhikov, V., Xiao, G., & Zakharyaschev, M. (2018). Querying
log data with metric temporal logic. Journal of Artificial Intelligence Research, 62 (1),
829–877.

Camossi, E., Jousselme, A.-L., Ray, C., Hadzagic, M., Dreo, R., & Claramunt, C.
(2017). Maritime experiments specification, h2020 datacron project deliverable d5.3..
http://datacron-project.eu/.

Ceri, S., & Widom, J. (1991). Deriving production rules for incremental view maintenance.
In Proceedings of the 17th International Conference on Very Large Data Bases, VLDB
’91, pp. 577–589, San Francisco, CA, USA. Morgan Kaufmann Publishers Inc.

Cervesato, I., & Montanari, A. (2000). A calculus of macro-events: Progress report. In
Seventh International Workshop on Temporal Representation and Reasoning, TIME
2000, Nova Scotia, Canada, July 7-9, 2000, pp. 47–58.

Chittaro, L., & Montanari, A. (1996). Efficient temporal reasoning in the cached event
calculus. Computational Intelligence, 12 (3), 359–382.

Clark, K. L. (1977). Negation as failure. In Logic and Data Bases, Symposium on Logic and
Data Bases, Centre d’études et de recherches de Toulouse, France, 1977, pp. 293–322.

53

Tsilionis, Artikis, & Paliouras

Cugola, G., & Margara, A. (2010). TESLA: a formally defined event specification language.
In Proceedings of the Fourth ACM International Conference on Distributed Event-
Based Systems, DEBS 2010, Cambridge, United Kingdom, July 12-15, 2010, pp. 50–
61.

Cugola, G., & Margara, A. (2012). Complex event processing with t-rex. Journal of Systems
and Software, 85 (8), 1709 – 1728.

Demers, A. J., Gehrke, J., Panda, B., Riedewald, M., Sharma, V., & White, W. M. (2007).
Cayuga: A general purpose event monitoring system. In CIDR 2007, Third Biennial
Conference on Innovative Data Systems Research, Asilomar, CA, USA, January 7-10,
2007, Online Proceedings, pp. 412–422.

Dindar, N., Fischer, P. M., Soner, M., & Tatbul, N. (2011). Efficiently correlating complex
events over live and archived data streams. In Proceedings of the 5th ACM Interna-
tional Conference on Distributed Event-based System, DEBS ’11, pp. 243–254, New
York, NY, USA. ACM.

Dong, G., & Su, J. (1994). First-order incremental evaluation of datalog queries. In Beeri,
C., Ohori, A., & Shasha, D. E. (Eds.), Database Programming Languages (DBPL-4),
pp. 295–308, London. Springer London.

Dong, G., Su, J., & Topor, R. (1995). Nonrecursive incremental evaluation of datalog
queries. Annals of Mathematics and Artificial Intelligence, 14 (2), 187–223.

Dong, G., & Topor, R. (1992). Incremental evaluation of datalog queries. In Biskup, J.,
& Hull, R. (Eds.), Database Theory — ICDT ’92, pp. 282–296, Berlin, Heidelberg.
Springer Berlin Heidelberg.

Dong, G., & Su, J. (1995). Incremental and decremental evaluation of transitive closure by
first-order queries. Information and Computation, 120 (1), 101 – 106.

Dousson, C., & Maigat, P. L. (2007). Chronicle recognition improvement using temporal
focusing and hierarchization. In IJCAI 2007, Proceedings of the 20th International
Joint Conference on Artificial Intelligence, Hyderabad, India, January 6-12, 2007, pp.
324–329.

Fern, A., Givan, R., & Siskind, J. M. (2002). Specific-to-general learning for temporal
events with application to learning event definitions from video. Journal of Artificial
Intelligence Research, 17 (1), 379–449.

Giatrakos, N., Alevizos, E., Artikis, A., Deligiannakis, A., & Garofalakis, M. N. (2020).
Complex event recognition in the big data era: a survey. VLDB J., 29 (1), 313–352.

Grez, A., Riveros, C., & Ugarte, M. (2019). A formal framework for complex event pro-
cessing. In 22nd International Conference on Database Theory, ICDT 2019, March
26-28, 2019, Lisbon, Portugal, pp. 5:1–5:18.

Grez, A., Riveros, C., Ugarte, M., & Vansummeren, S. (2020). On the Expressiveness of
Languages for Complex Event Recognition. In Lutz, C., & Jung, J. C. (Eds.), 23rd
International Conference on Database Theory (ICDT 2020), Vol. 155 of Leibniz In-
ternational Proceedings in Informatics (LIPIcs), pp. 15:1–15:17, Dagstuhl, Germany.
Schloss Dagstuhl–Leibniz-Zentrum für Informatik.

54

Incremental Event Calculus for Run-Time Reasoning

Gupta, A., Mumick, I. S., & Subrahmanian, V. S. (1993). Maintaining views incrementally.
SIGMOD Rec., 22 (2), 157–166.

Gyllstrom, D., Wu, E., Chae, H., Diao, Y., Stahlberg, P., & Anderson, G. (2006). SASE:
complex event processing over streams. CoRR, abs/cs/0612128.

Hu, P., Motik, B., & Horrocks, I. (2018). Optimised maintenance of datalog materialisa-
tions. In Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence,
(AAAI-18), the 30th innovative Applications of Artificial Intelligence (IAAI-18), and
the 8th AAAI Symposium on Educational Advances in Artificial Intelligence (EAAI-
18), New Orleans, Louisiana, USA, February 2-7, 2018, pp. 1871–1879.

Hu, P., Motik, B., & Horrocks, I. (2019). Modular materialisation of datalog programs.
In The Thirty-Third AAAI Conference on Artificial Intelligence, AAAI 2019, The
Thirty-First Innovative Applications of Artificial Intelligence Conference, IAAI 2019,
The Ninth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI
2019, Honolulu, Hawaii, USA, January 27 - February 1, 2019, pp. 2859–2866.

Idris, M., Ugarte, M., Vansummeren, S., Voigt, H., & Lehner, W. (2019). Efficient query
processing for dynamically changing datasets. SIGMOD Rec., 48 (1), 33–40.

Koch, C., Ahmad, Y., Kennedy, O., Nikolic, M., Nötzli, A., Lupei, D., & Shaikhha, A.
(2014). Dbtoaster: higher-order delta processing for dynamic, frequently fresh views.
The VLDB Journal, 23 (2), 253–278.

Kowalski, R. A., & Sergot, M. J. (1986). A logic-based calculus of events. New Generation
Comput., 4 (1), 67–95.

Lee, J., & Palla, R. (2012). Reformulating the situation calculus and the event calculus
in the general theory of stable models and in answer set programming. Journal of
Artificial Intelligence Research, 43, 571–620.

Li, M., Mani, M., Rundensteiner, E. A., & Lin, T. (2011). Complex event pattern detection
over streams with interval-based temporal semantics. In Proceedings of the 5th ACM
International Conference on Distributed Event-based System, DEBS ’11, pp. 291–302,
New York, NY, USA. ACM.

Liu, M., Rundensteiner, E. A., Greenfield, K., Gupta, C., Wang, S., Ari, I., & Mehta, A.
(2011). E-cube: multi-dimensional event sequence analysis using hierarchical pattern
query sharing. In Proceedings of the ACM SIGMOD International Conference on
Management of Data, SIGMOD 2011, Athens, Greece, June 12-16, 2011, pp. 889–
900.

Mei, Y., & Madden, S. (2009). Zstream: a cost-based query processor for adaptively detect-
ing composite events. In Proceedings of the ACM SIGMOD International Conference
on Management of Data, SIGMOD 2009, Providence, Rhode Island, USA, June 29 -
July 2, 2009, pp. 193–206.

Miller, R., & Shanahan, M. (2002). Some alternative formulations of the event calculus. In
Computational Logic: Logic Programming and Beyond, Essays in Honour of Robert
A. Kowalski, Part II, pp. 452–490.

55

Tsilionis, Artikis, & Paliouras

Montali, M., Maggi, F. M., Chesani, F., Mello, P., & van der Aalst, W. M. P. (2013).
Monitoring business constraints with the event calculus. ACM TIST, 5 (1), 17:1–
17:30.

Motik, B., Nenov, Y., Piro, R., & Horrocks, I. (2015). Incremental update of datalog
materialisation: The backward/forward algorithm. In Proceedings of the Twenty-Ninth
AAAI Conference on Artificial Intelligence, AAAI’15, pp. 1560–1568. AAAI Press.

Motik, B., Nenov, Y., Piro, R., & Horrocks, I. (2019). Maintenance of datalog materialisa-
tions revisited. Artif. Intell., 269, 76–136.

Mutschler, C., & Philippsen, M. (2014). Adaptive speculative processing of out-of-order
event streams. ACM Trans. Internet Techn., 14 (1), 4:1–4:24.

Paschke, A. (2006). Eca-ruleml: An approach combining ECA rules with temporal interval-
based KR event/action logics and transactional update logics. CoRR, abs/cs/0610167.

Paschke, A., & Bichler, M. (2008). Knowledge representation concepts for automated SLA
management. Decision Support Systems, 46 (1), 187–205.

Patroumpas, K., Alevizos, E., Artikis, A., Vodas, M., Pelekis, N., & Theodoridis, Y. (2017).
Online event recognition from moving vessel trajectories. GeoInformatica, 21 (2), 389–
427.

Pitsikalis, M., Artikis, A., Dreo, R., Ray, C., Camossi, E., & Jousselme, A.-L. (2019).
Composite event recognition for maritime monitoring. In Proceedings of the 13th
ACM International Conference on Distributed and Event-Based Systems, DEBS ’19,
p. 163–174, New York, NY, USA. Association for Computing Machinery.

Przymusinski, T. (1987). On the declarate semantics of stratified deductive databases and
logic programs. In Foundations of Deductive Databases and Logic Programming. Mor-
gan.

Ray, C., Dréo, R., Camossi, E., Jousselme, A.-L., & Iphar, C. (2019). Heteroge-
neous integrated dataset for maritime intelligence, surveillance, and reconnaissance.
https://zenodo.org/record/1167595.

Ray, C., Camossi, E., Jousselme, A.-L., Hadzagic, M., Claramunt, C., & Batty, E. (2016).
Maritime data preparation and curation, h2020 datacron project deliverable d5.2..
http://datacron-project.eu/.

Ronca, A., Kaminski, M., Grau, B. C., Motik, B., & Horrocks, I. (2018). Stream rea-
soning in temporal datalog. In Proceedings of the Thirty-Second AAAI Conference
on Artificial Intelligence, (AAAI-18), the 30th innovative Applications of Artificial
Intelligence (IAAI-18), and the 8th AAAI Symposium on Educational Advances in
Artificial Intelligence (EAAI-18), New Orleans, Louisiana, USA, February 2-7, 2018,
pp. 1941–1948.

Santipantakis, G. M., Vlachou, A., Doulkeridis, C., Artikis, A., Kontopoulos, I., & Vouros,
G. A. (2018). A stream reasoning system for maritime monitoring. In 25th Interna-
tional Symposium on Temporal Representation and Reasoning, TIME 2018, Warsaw,
Poland, October 15-17, 2018, pp. 20:1–20:17.

56

Incremental Event Calculus for Run-Time Reasoning

Schultz-Møller, N. P., Migliavacca, M., & Pietzuch, P. R. (2009). Distributed complex
event processing with query rewriting. In Proceedings of the Third ACM International
Conference on Distributed Event-Based Systems, DEBS 2009, Nashville, Tennessee,
USA, July 6-9, 2009.

Tsilionis, E., Artikis, A., & Paliouras, G. (2019a). Incremental event calculus for run-time
reasoning. In Proceedings of the 13th ACM International Conference on Distributed
and Event-based Systems, DEBS ’19, pp. 79–90, New York, NY, USA. ACM.

Tsilionis, E., Koutroumanis, N., Nikitopoulos, P., Doulkeridis, C., & Artikis, A. (2019b).
Online event recognition from moving vehicles: Application paper. Theory Pract. Log.
Program., 19 (5-6), 841–856.

Zhang, H., Diao, Y., & Immerman, N. (2014). On complexity and optimization of expensive
queries in complex event processing. In International Conference on Management of
Data, SIGMOD 2014, Snowbird, UT, USA, June 22-27, 2014, pp. 217–228.

57

