PROCEEDINGS OF THE INTERNATIONAL CONFERENCE
ON FIFTH GENERATION COMPUTER SYSTEMS 1934,
edited by ICOT. ©@ [COT, 1984

361

METACONTROL OF LOGIC PROGRAMS IN
METALOG

Mehmet DINCBAS - Jean-Pierre LE PAPE

Centre Mational 4'Etudes des Télécommunications
Raute de Trégastel
22301 LANNION CEDEX - FRANCE

ABSTRACT

This paper pressnts a new and efficient
implementation of METALOG that provides meta-
level control expression facilities for Horn clauses
logic programming.

In METALOQG, eontral information, specified
in another logic program, is viewed as metaknow-
ledge, expressing how to use the object-level know-
ledge. The meta-level expression of the control
information gives to a user possibilities to inter-
vang on the deduction process, to define his strate-
gies and then to specify his own interpreter. For
thiz resson, METALOG can be considered as a
meta-PROLOG.

The twa levels af knowledge are exprassed in
Horn elauses : object-knowledge in clauses and
metaknowledge in metaclauses. METALOG provi-
des a set of control-predicates that one must use in
metaclauses in order to Indicate his strategles and
heuristics to the meta-interpreter.

Several examples are given [llustrating the
powerful -control expression facilities concerning
almost all aspects of the inference process. We
also give, for some well-known problems, the per-
formances (CPU time, number of deduction cycles,
etcw..) obtained in METALOG and compare them
with a standard PROLOG interpreter.

As one can see from these examples, the
combination of object and meta-levels gives to the
systemn more natural and powerful control expres-
sion facilities than any other technigue, and &
great efficiency in the execution of programs,

1 INTRODUCTION

The METALDG aystern has been defined in
order to meet the inadequacies of PROLOG as a
prablem solver (or "inference engine") - notably
with respect to the control of deduction process
(Dinchas 1980a). The first implementation has been
written in PROLOG and Initially used as the kernel
of PEACE, & protatype expert system for electro-
nic circuit design {Dinchas 1980b). In order to
obtain good performance, as much from the point
of view of memory requirements as that of execu-
tion time, we have undertaken a clearly more

efficient implementation in LISP. In the following
paper, we shall illustrate this new application of
METALOG by giving numerous examples. We shall
begin by diseussing the problem of deduction con-
trol and by showing the weaknesses of PROLOG
and the assets of METALOG in this respect. Wa
shall then present the general organization of
METALOG and the operation of the meta interpre-
ter. Having presented the meataclauses and their
use in the control of the inference process, we
shall give instructions for the Implementation of
METALOG. Finally, we shall conclude by giving
numerous sxamples of the use of the metacontrol
expression on some well-known probleams showing
the power of the control metalanguage.

2 THE PROBLEM OF BEDUCTION CONTROL

The control problem is essential in the pro-
blem solvers for the careful direction of the search
for a solution, and the avoidance of the exponential
explosion of the search space. It concerna all
aspects of the inference process -forward execu-
tion and backtracking process allke, as well as all
problems linked to the managament of search
space. Within this framework, two types of control
can be distinguished.

1) Internal control = implemented in the interprater
iri the form of general strategies and heuristics (for
example efficient forward execution process, intel-
ligent backtracking, detection of decidable loops,

efficlent management of the resolution tree,
et

2) External control : explicitly described by the
user in some formal notation.

The METALOG systemn atternpts to provide a
solution particularly te this external control pro-
blem by giving the system's user the possibility of
expressing his partlcular strategiss and heuristics
in a metalanguage, and therafore the ability to
directly control the information deduction process
and even to describe his own problam aolver.

The need for a system like METALOG is felt
when PROLOG is used as an inference engine for
expert systemna or for the problems arising from
the plan-generation in robotics. In fact, for pro-
blems of this nature, the inadequacies of PROLOG

362
emerge in two ways,

a) Inflexibility and limitations of the internal con-
trol : The PROLOG interpreter applies the "resolu-
tion princlple" and constructs the derivation tree
according to a static and predefined strategy
(Kowalski 1979b) (Van Emden 1977) :

- choice of the leftmost literal in the resol-
vant, as literal to be solved ;

- choice of clauses In written order for the
resolution of the selected literal ;

- in case of failure, systematic backtracking
to the lest choice made, without taking
into account the cause of failure.

Moreover, the interpreter repests the basie
eyele without control between the cyeles :

- no detection of (decidable) infinite loops
(partially linked to its static strategy).

= no preventive detection of failures in the
resolvents,

b} The absence of possibilities of expression of the
external eontrol : The user finds it impossible to
express his metaknowledge (strategies, heuris-
tics...) if he does not mix it - in certain particular
cases - with his linowledge.

We must note that these inadequacies are not
at all inharent to Logic but are linked to a particu-
lar implamentation.

The assets of METALOG are located ;

= on a level of internal contral : thanks to an
"intelligent backiracking” process which is
very easy to implement and cheap to exe-
cute (see (Dincbas 1979a} and the map
colouring problem in chapter 7).

- and, above all, on a level of extsrnal
contral + expression and consideration of a
heuristic control given by the user in a
metalanguage In the form of metaknow-

ledge.

In the fellowing work, we will discuss the
aspect of "external control" in particular. Diffe-
rent approaches have been propesed for the expres-
sion of eontrol in Horn clauses programming. We
can quote notably ;

- control by ennotation of variables : this is
the case of IC-PROLOG (Clark and
MeCabe 1980).

- contrel by the use of metapredicates in
clauses : this is the case of the GELER and
DIF predicates in PROLOG-IT (Colmerauer
1982).

- control by the use of connectives for lite-
ral conjunctions in clauses : this iz the case
of EPILOG (Porto 1982) {Persira 1982).

- control completely independant of pro-
grams : thiz is the case of studies carried
out aspecially at CERT/Toulouse (Fahmi
1979} (Gallaire and Lasserre 1979} (Gallaire
and Lasserre 1982) (Dinchas 1980a) which
must be brought together with the study of
metarules for expert systems (Davis 1980)
{Davis and Buchanan 1977).

The advantage of the last approach with
relation to the first ones, is that control is not
eonfined to one cleuse but is found in all the search
space and enables the expression of general strate-
gies (for a survey and a discussion of these methods
see (Gallaire and Lasserre 1982)),

METALOG has adopted this last approach and
enables the user to control nearly all the deduction
process. For this purpose, the user has two levels
of language at his disposal :

- an cbject-language in which his domain-
specific knowledge is expressed,

- a metalanguage in which he expresses his
metaknowledge i.e. the [nstructions and
heuristies on the use of his knowledge
(eontral infarmation),

Through this metalanguage, the user of
METALDG can ¢

= either express some semantic information
about his particular problem in order to
reduce the search space,

- or specify a {more or less general) problem
solving strateqgy.

We believe that the object-language alone, is
not sufficient for the expression of the strategies
and heuristics mentioned above, In arder to express
"how to use what we know", we must pass from the
"object" level to the "meta" level, We claim that
an efficient problem solving process ls obtained by
combining the object-knowledge with the meta-
knowladoe.

The knowledge/metaknowledge duality in
problem solving (and therefore in expert systems)
ls similar to the logic/eontrol duality proposed by
R. KOWALSKI for the analysis of algorithms
("Algorithm = logic + control") (Kowalski 1979a).
The idea underlying these formulations rests in the
desire to distinguish information which expresses
knowledge from the infarmation which expresses
how to use that knowledge ; in other words, to
create a distinetion between knowledge belonging
to theory, and metaknowledge belonging te meta
theory. The combination of these two "object" and
"meta" levels -knowledge/metaknowledge, and lan-
guage/metalanguage - gives the system the capaci-
ty to express knowledge and solve problems much
more extensively and efficiently than the first
order logic (for other considerations on this combi-
nation, see (Bowen and Kowalski 1982) and
(Weyhrauch 1980),

3 GEMERAL ORGAMIZATION OF METALOG

In METALDG, the two knowledge levels are
expressed in the same representation framework.
This s the claussl form of the predicate logic
reatricted to the Horn clauses. In other words :

- knowledge is expressed in clauses, and
- metaknowledaoe is expressed in meta-
clauses.

The use of another logic program to specify
the control has been first suggested by P. HAYES
{Hayes 1973). The approach tesken in METALOG
improves and generalizes the proposals of H.
GALLAIRE & C. LASSERRE (Gallaire and Lasserra
1982} In this direction.

We must recall that cleuses (metaclauses
respectively) correspond to rules (metarules res-
pectively) in ‘“production systems" (Davis and
Buchanan 1977} The predicates and clauses of the
sbjeet-language are processed as objects (i.e. logic
“parms" of the metalanguage. Through the
metaclauses, the user has acecess to the entire set
of clauses (he can describe and examine them) as
well as the resolution tree (and therefore control
of the search spacs).

The metaclauses sre distinguished from the
clauses by their head predicate which iz a “control
predicate”, predefined in the system and having
semanties known to the interpreter. These control
predicates are directly destined for the decision
points of the problem solver.

In the new version of METALOG, the nota-
tion used for the expression of clauses and meta-
clauses, is that of LISLOG - s PROLOG interpreter
we have written in LISP and completely embedded
in the LISP environment (Bourgault et al. 1984). It
has, in particular, the same potential use as eva-
luable predicates and reducible terms {(as In
LOGLISP (Robinson and Sibert 1982)).

The METALOG modules

i Intarprater Mornal l

Knewledge Base

User mgta-Interpretet
I Clauses
Interface Mptaclauses
| LISLOGC Interproker

- the meta-interpreter guides the resolution
by analysis of metaclauses.
. it activates requested controls.
. it eonstructs the progression strategy
{forward or backward), specified by
the user.

- the kernel interpreter =
. opplies the progression chosen by the
meta interpreter.
. executes the requested acceptation
tests.

363

- the LISLOC interpreter ls activated by the
meta-interpreter for the sub-processing of
cartain problems.

4 THE PRINCIPLES OF OPERATION OF THE
META-INTERPRETER

4.1 In the ahsence of metaclauses

METALOS applies a default strategy identi-
eal to that of PROLOG concerning the choice of
literals and clauses. In case of fallure, METALOG
uses an "intelligent" backtracking mechanism
which entails backtracking to the most recent
resolvent, which is not subsumed! by the failed
literal, and which presents a non-volid list of
alternative clauses (Dincbss 19B0a). This
backtracking mechanism avaoids going back towards
resolvents destined for failure. It preserves the
completeness of the ayatem.

4.2 In the presence of metaclauses

We have seen that metaclauses can be distin-
guished by the presence of = control predicate
known to the system in their head
literal.Therefore, at @ach decision point, the meta-
interpreter takes one or many control predicates
into consideration. These are mainly :

- for the selection of literals : ACTIVATE
and FREEZE.

- for the selection of clauses @
CHOOSECLAUSE and INHIBCLALISE,

- for the choice of a backtracking peint in
case of failure : BACKFAIL and
INHIBACHK.

- for requesting a new inference rule "facto-
risation" : FACTOR.

- for acceptance tests of the resolvent :
REJECTGOAL.

- for masking the external control : FINISH.
The objects of the metalanguage are :

- literals, clauses, predicates and objects of
the cbject language.

= the elements composing the resolution tree
{resolvent, chosen literal, called clause,
literal in failure...).

Example : The metaclause

{ACTIVATE #r #1) < (totalinst =1)
demonstrates a general strategy which entails
choosing a literal (#1) in a resolvent (sr) which is

1 Let us recall that if Cy and Cp are 2 clauses, we
can say that C7 subsumes Cg, if an instance of Cy
is included in Cg, i.e. if a & substitution exists so
that Cp.8CCo (Kowalaki 1979b).

364

completely Instantiated ; “totalinst" might be a
predefined predicate of the system, or possibly
dafined in LISLOG,

Remark : The examplas are described In LISLOG's
% |a LISP" syntax. In addition variables are prefi-
xed by a "s" (Bourgault et al. 1984),

Analysis of metaclauses

The meta-interpreter investigates metaclau-
aas with respact to the deciston point attained and
calls them accerding to thelr written erder in the
metaknowledge base. The call of a metaclause is
made by subsumption? on the arguments of the
control predicate, Suppose a mataclause of
"aetion™ type

{"action" a1 ap ... 8} <— eond) condg ... eondy
using the control predicate

("action™ E] b2 . b))
where t; designates a type of object {current
resolvent, chosen literal, called clause, ...) known
to the sysbem.

For example for (ACTIVATE 1 t3)

t; refers to the current resolvent and tz to a
literal eandidate for selection lL.e. a literal of the
current resolvent,

The meta interpreter :

- searches a set of objects O (i = 1,k) of
type tj (i = 1,k) which are subsumed entire-
Ly by arguments a; (I = L,k

- in the case of success of this subsumption,
the evaluation of conditions (cond] ...
cond,) is completely subprocessed in
LISLOG.

- in the case of a success in this svaluation
in LISLOG, the decision associated with
the metaclause is taken.

5 METACLAUSES

Metaclauses enable the specificatlon of an
pxternal control - f.e. the expression by the user of
his own resolution strategies and heuristics. They
engure the introductlon of meteknowledge with the
following advantages :

- complete separation betwesn the expres-
sion of metaknowledge and that of know-
ledge : a modification in the set of meta-
clauses will lead to a completely different
progrem execution.

2 Mote that while unificstion Is very well adapted
to computation, subsumption (roughly saying
"pattarn-matehing™) Is more suttable to designate,
to select and to manipulate objects (literals,

clauses, resolvents, ...

= the possibility of expressing a very general
or very localized control thanks to the
subsumption mechaniam.

In general, two types of control predicates

are available at each decision point of the deduc-
tion cyele

- an activation predicate enabling the actl-
vgtion of a priority decision.

- an inhibition predicate enabling the refusal
of the decision by default of the meta
interpreter and therefore the reguesting of
a new decislon by default.

5.1 Selection of Literals
{ACTIVATE r 1) <= condition

where conditlon is in tha form cond] cond? ..
condp n 30

rfle : To describe a selection strategy of a literal
{ll in the current resolvent (r) (the argument cor-
responding to the object concerned, is shown In
brackets),

Examples :

1 (ACTIVATE #r (on A wx)) <—
expresses a particular strategy : unconditional
activation of a literal subsumed by {on A =x) in the
eurrent resolvent.

2 (ACTIVATE (sp . =q) #p) ¢—

expresses the PROLOG general strateqy (selection
of the leftmost literal).

* (FREEZE r 1} <= condition

réle : To describe a strategy freezing a literal (1) in

the current resolvent (rh
Examples ¢
1 (FREEZE #r (on =x sy)) <— (var =x)

to freeze the selectlon of a literal subsumed by (on
X wy) if its first argument is a variable.

2 {(FREEZE #r #1) ¢~ (noninst =1}

general strategy which entails freezing in a resol-
vent, every literal containing variables,

Comment 1 @ Tm.a cholce of literal in a resolvent is
exclusive : it cannot be reconsidered during back-
tracking.

Comment 2 : These two types of metaclauses lead
to the definition of a coroutine mechanism.

5.2 Selection of clauses
= (CHOOSECLAUSE p 1) <— condition

rile : To give first choice to a clavse whose body
1) is characterized by the metaclause, for the
resolution of the selected literal (p).

Example 3
{CHOODSECLAUSE wp nil} &—

expresses the "unit preference’ strategy, le. for a
selected literal p, Invocation of unit clauses as
first choices.

* (INHIBCLAUSE p 1) <— condition

rile 3 To inhibit the choice of clauses whose body
{17 is characterized by the metaclause for the
resolution of the selected literal (ph

Examples

1 (INHIBCLAUSE (toto 5 #x) =1) (—
{in (titi #y) #1)

indicates to the syatem to inhibit any clause which
pontains In its body =l a literal of the form (titi =y}
whenever the selected literal p is subsumed by
(toto 5 =x)

Comment : These two types of metaclauses are of
particular interest for expert systems ; they, in

fact, allow content-directed procedure invocation
{Davis and Buchanan 1977).
2 Definitlon of negation in METALOG

(non #x) £&—
(INHIBCLALUSE {non =x) nil) <— (meta sx}

If #x is proved ln METALDG (the system
predicate "meta" allows to cell METALOG from
LISLOG} then the first clause is inhibited and
therefore the literal (non #x) iz Ffailed. Elze (non
#3%) succesds.

Remark : see section 5 for another use of the
predicate "meta" and enother definition of nega-
tion under METALOG.

5.3 Cholce of a backtracking point in case of
Tailure

* (BACKFAIL p r) <— condition

rélle : To choose a backtracking resolvent (r) in
case of failure on a literal (ph

Example 3

(BACKFAIL »p #r) <— (not ((in =p) #r)
{subsume =p =p1 1))

expresses a general strategy equivalent to the
intelligent backtrack mechanism executed by de-
fault : choice of a backtracking resolvent not
containing a literal subsumed by the failed literal
(gee the map colouring problem).

" (INHIBACK p ¢} ¢—— condition

365

rile : To inhibit the choice of a backtracking
resolvent (r) in case of failure on a literal (ph

Example :

(INHIBACK #p #r) <— (In #p] *r){subsume =p] *p)
(not xp1)

expresses a general backtracking strategy with
generalization of failure : In the event of failure on
a literal, go back to a backtracking resolvent, not
containing an unprovable generalization of the fai-
led literal.

5.4 Request for resolution by factorisation
*# (FACTOR r 17 19) <— candition
réle : To request a supplementary inference by

factorisation with another literal {(17) for the cho-
sen literal (1) in the current resolvent (r).

In the case of success of this metaclause, the
action undertaken consists In unifying the two (11
and 17) literals, and in generating a new resolvent
from which the second (lg) literal is eliminated.
This is a very elegant %il"ld efficient) way to
eliminate the repeated appearance (and therefore
execution) of some subproblems during e problem
solving process.

Examples :
1 (FACTOR sr (fibo #n #x) (Tibo n =y)) {=—

factorisation of two literals concerning the “fibo"
predicate, and having the same first argument.

2 (FACTOR wr #17 #19) ¢— (totalinst «17)
(totallnat *lz}
(equal x1] »137)

general factorisation strategy of two identical lite-
rals.

5.5 Masking of external control
* (FIMISH 1) €— condition

rile : Assignment of the resolution of the chasen
literal (1) to LISLOG,

Exam?e : Processing of negation under
LOG : "mnot"

(FREEZE «r (mnot =x)) <— {noninst «x)
{FINISH (mnot #x)) <—

(mnot #x) ¢ {meta »x) (zlash) (fail)
{mnot #x) <—

Femark : The predicate "meata" permits to create a
new search space in METALOG. Both "FIMISH" and
"meta" allow to switch from one ssarch space to
another and therefora to localize the control (see
further the implementation issues).

366
"meta"

ﬁ
LISLOG METALOG
R
NFIMISH"

5.6 The acceptation tests of resclvents
{REJECTEOAL nr) <— condition

role : Rejection of the current resolvent (r) of
depth (n).

Conditions can refer to various types of tests
concerning the current rasolvent,

Example : Detection of logic loops (Dincbas
1931]#;.-

(REJECTGOAL #n #r} <— (resolvent wry #r1)
{varlant #r #r1)

rajection of a candidate resolvent «r if there iz a
previcus resolvent wrp, in the proof tres, which is a
varlant (identical modulo variable names} of sr.
Note that (resolvent ny r]) is a system predicate of
METALOG restoring all resolvents ry of the proof
trée baginning with the most recent.

& SPECIFIC ASPECTS
OF THE METALOG IMPLEMENTATION

In addition to usual difficulties snecountered
in the implementation of PROLOG-like interpre-
ters, naw problems arise when Implementing
METALOG ; among those the four following points
are the essential ones,

6.1 Internal representation of objects

The basie principle adopted is structure-
gharing. The concepts (term, literal) of the object
language are represented in the system by a (s.v)
dotted pair whers :

- 8 is a pointer towards a structure (or
skeleton} of the knowledge base or the goal
to be solved.

= ¥ i5 a pointer towards an instantiation
vector which defines a particular occuren-
ce of the skeleton ; for each bound variable
of the skeleton, v defines the associated
link i.e. a new object of the form {5'.v").

The metalanguage specification requires the
ability to handle new concepts : clauses, current
resalvent, previous resolvents, chosen literal, lite-
ral in failure... The implementation of some of
these concepts within the framework of structurs
sharing, have led us to the extension of the object
notion on the internal representation level and to
the extenslon of the associated cesalng
mechanisms (particularly, the unification),

a) Resolvents
The manipulation of resolvents is a frequent

operation in metaclauses. Resolvents (or lists of
literals) are not generated in the (a.v} form Le. a

hormogeneaus skeleton with regard to an Instantia-
tion vector, but they are naturally represented by a
heterogeneous structure like : {{sl.v Y (svy) s
(8,-v)). To avoid the copying of réso venz ifi the
fatm of homogeneous structures, a mechanism for
recognition and processing of objects of resolvent
type has been introduced Into the system.

b) Deferred objects

The metaclauses not only refer to abjects of
the current resolution step, but also objects of a
past resolution step (the BACKFAIL and
INHIBACK cases, in particular), In order to
manipulate these objects, we would have to :

- gither memorize the copies of these
objects at each resolution step.

- or memorize copies of Instantlation vec-
tors at each step.

To avoid costly coples, we have preferred to
develop an incremental construction technique for
vectors, which associated with a deferred access
mechanism, enables the state of the veetar in
whatever resolution step to be retrieved ; this
technique ensbles too, if necessary, a new (tempo-
rary} extenslon of the vector from its deferred
state.

Another object type appears, therefore, in
internal representation : deferred objects. On first
encounter with such an object, the deferred access
mechanism retrieves the deferred state of the
vector and links it with the deferred object.

Four classes of objects have thus been obeer-
ved in internal representation :

- ordinary objects (term, literal, clause) ;
resolvent abjects ;

deferred ordinary objects ;

- deferred resolvent objects.

6.2 Management of alternatives

The ability to express a strategy to select the
clauses within a subprogram, requires to revise the
classical management of choice alternatives in the
form of sequential access list, METALOG needs to
memorize two types of informatlon in every choice
node :

- a dynamic chaining of choice alternatives ;

- a sequential access list of alternatives of
CHOOSECLAUSE type metaclauses being
waiting in this node ; indeed they are the
only metaclauses whosa exploration can be
activated again during backtracking.

6.3 Mechanism of subsumption

The analysis of metaclauses usea subsum-
ption ; so the corresponding mechanism must have
been implemented and extended to the new classes
of objects distinguished in the internal representa-
tion,

6.0 Overlapping of LISLOG and METALOG szearch
spaces

& resolution under METALOG requires the
construction of multiple search spaces :

= the main search space concerning the goal
to be solved ;

- a succession of loeal ssarch spaces corres-
ponding to the analysis of metaclauses con-
ditions ; they are developed at the request
of metacontrol and, in general, from the
current context of the main search space ;
the life of a search space of this type lasts
the time of analysis of the concerned me-
taelause body.

Furthermaore, every one of these spaces can
be constructed by overlapping, at the option of the
user, two types of search subspaces :

- the METALOG type subapecas (with active
metacontrol) introduced under LISLOG by
the systam predicate "meta",

- the LISLOG type subspaces (without meata-
contral) intraduced under METALOG by
the "F IMISH" control predicate.

To manage this double complexity in the
search, the system integrates mechanisms for swit-
ching, for interfacing and for overlapping the con-
trol structurss associated with the two types of
search ; indeed, the transfer between searching
spaces must be achieved during forward execution
process as during backtracking,

T USE OF METALOG :
EXAMPLES AND PERFORMAMNCES

Preliminary remarks :

Some abbreviations will be used &ll along this
gsection in order to simplify the presentation of
results ;

t will point out the execution time {mea-
sured under MACLISP/MULTICS) expras-
sed in seconds unless otherwise stated ;

n will point gut the pumber of deduction
cycles (or Inferences) ;

b will point out the number of backtracks
executed during the resolution §

The L, M marks will refer to resolutions
under LISLOG and METALOG respectively.

If necessary, the M1, MZ ... notation will
enable to distinguish several cases of experimenta-
tions undar METALOG, The results marked by tha
"s" gymbol are estimations of the real values
{sometimes with an unlimited memory space). Tha
examples will be described in the LISLOG paren-
thesized syntax ; they use some system predicates
of LISLOG

367

{var arg) tests whether arg is a variable ;
{const arg) tests whether arg is & constant ;

(lispeval lisp-expression arg) tries to unify the
waeluation result of the lisp-expression with the
term arg.

Another faecility of LISLOG {and METALOG)
will be used : the notion of valuable term (reduci-
ble term) syntactically introduced by the "&" cha-
racter. When meeting such a term, the unification
machanism calls LISP to evaluate the term, then
carries on the processing, using the value returned
by LISP (see (Bourgault et al. 1984)).

7.1 Malve reverse : "naive” inversion of a list
Knowledge base :

- clauses 1

{revn nil nil) <—
{revn (ex.=y) =z) &— (revn =y =t}
{conc «t (ax) »2)

(eone nil wv wv) ¢—
{eone (#t. =u) #v (st . =w)) <— (conc «u *v sw)

- mataclauses : two types of metacontrol have
been separately tried on this example @

M1: (FREEZE wr (revn #x wy)) <— (var sx)
MZ : (ACTIVATE =xr (cone . #x)) ¢—

M1 and M2 Introduce performances which are
particularly interasting in the case of the problem
"in reverse” L.e, for a problem of form (revn s=x {(a b
o)) + computation of the first argument, knowing
the second. ML asks for freezing the choice of a
literal of {revn =x =y) type in a resolvent of wr
type if its first argument i3 & variable. M2 compels
the activation of a literal with pone predicate
name in a resolvent of sr type.

Mumber of deduction cycles : {inversion of a list of
1 length)

without metacontrol nv13/é
with FREEZE or ACTIVATE nv 12/2

Steps of resolution with FREEZE or ACTIVATE
{the literal chosen by METALOG is underlined).

value af sx
L #x (8 b el 2%
. (el ; syl}
o . w¥1)
(o wic? . oy2)
'.l' iﬁ'm -5-2 f-.- cans X
(cb. sy}
'm 1;1 Y _'ll:-enn.n 23 (sx3) (=)} (ebaxd. eyd)

{U.fnrm sy¥ nll) E_',:: :J. 3

368

Perfarmances
L lengtht 1a n X 50 100
By 043 .7y #.0s 3853 Bmnlla

tadl 03 13 2% TS 00
g2 0.27a 0.7en 0w 5.5 2308
fwa | L1 21 %1 %3 ma

ty ftpaz L& 2.9 a5 13 4.2
' 231 151 4991 22150 171eq)
g &6 I 496 L3I 5151

r_inp 3.3 6.8 w1l 167 33a
b 45 190 435 135 4%50
bR L] 0 o [\ i

Comment : This example shows the sansitivity of
the performances with respect to the complexity
of the metacontrol ; indeed, with FREEZE, the
resolution of ths metaclause body requires one
LISLOG eyele of deduction § so, for an execution
requiring n METALOG cyeles, the rmetacontrol
expressed with FREEZE will require n LISLOG
ecyclas § this explains the variation of performances
{in terms of CPU time) between the two types of
meatacontrol.

As a general rule, the simpler the metacon-
tral will be carried out, the nearer the ratio tL.FtM
will be of its n_/npy ideal value,

7.2 The k-queens prohlem

This concerns the placing of k queens on a
chessboard of k = k squares in such a way that they
gre not taken. The problem iz deliberately expres-
sed simply, to give proof of the advantage of
gxternal control.

The user enters his problem in the form of
{queen (1 2 ... k} »y) where (1 2 ... k) Is the list of
line numbers of the chessboard. The search for
golutions by the program simply corsiats in genera-
ting ane by one the possible sy permutations of
this list of numbers, in constructing each time the
corresponding list of positions (p number-of-line
rumber-of-column} and in checking each time the
coherence of the proposed positions. The check
affects only the diagonal tests because the
mechanism of positions generation by permutation
avoids implicitly the placing of two queens on the
game line or the same column.

Knowladqge base ¢

- clauses :
(qunsn sx sy) (= (pecm sx e¥)
{pair sx sy #z)
{aalfe wx)
{parm nil nil) —
(pecm s (e . svl) &=— (dal su ex ew)
(parm s w av)

(dal ax [ax . wy) ay) é—
{del sulex . sv)iay . sv)) c— (dol su ey &v)
{pair fll oil pil) £—

air Cex . sy} (ez . st} {p ox wz). sold ¢=—(palr oy ok =a}

afe nil) €—
{safe (sx . wy}) &— (check s oy)
(oufe +y)
{oheck wu nil) ¢—
{chock wi (sy . wg)) &= (nodleg sx 4§}
{check sn sz

(nodiag (p #x sy} (p sz #ti) — (nbamaing sy +2 au)
{absmalne &y ot sv}
{dif su #¥)

(nbamaing s% aF su] = (lapeval (sba (= sx szl wud

(dif w3 wx) d=—{(alash)
(fall}
(daf % ayli—

- metaclauses : two sets of metaclauses have been
tested separately, the first leading to better per-
farmances because it generates a minimum of
resolvents.

first set of metaclauses : M1

(FIMISH (nodiag . #x))

(ACTIVATE #r (nodiag . #x))

(ACTIVATE »t (pair «x (sy . #z) =t)) {—
(const #y)

(ACTIVATE #r {(check sx (ay . w2}l

(ACTIVATE wr (safe (xx . xv}))

These metaclauses will enable the activation
of diagonal btests before construction of a complete
permutation. Teats are activated sach time a new
couple of positions is proposed by perm. In the
event of fallure on these tasts, all permutations
coming from the partial permutation in failure, are
autornatically eliminated from the searching pro-
CESE,

second set of metaclauses = M2

(FINISH {nodiag . #x)) <—
(BACKFAIL (nodiag =pl {p =12 *c2)) ((del su
(02 o #y) #v) . arl) &—

In this sscond set, a complete permutation is
allowed to arise, but when dlagonal tests fail
becauss of a (pl, p2)} couple of positions, the
BACKFAIL metaclause enables backtracking to the
resolvent which caused the choice of one of the
positions of the failing couple ; in this way, a whole
clase of permutations destined for fallure are eli-
minated from the searching process. More
precisaly, we can ses that the mataclause asks
explicitly for the changlng of p2, because the
generatien of p2 appears during resolution after
the generation of pl.

Performances : search for the first quesn solution

k & [8
i 0.58s jt.6 Gmnlls
b1 0.9 &.08 Ils
T2 0678 T.28 1mnda
it L6d z1 T4
Ltz 0e7 1.8 an
ny 376 BakE 173 55T
AL FIT] 1519 B 945
T 299 3498 32 180
el 1.7 5.6 194
o fraz 1.3 24 54
b 49 950 14 £93
b 1 71 ¥z8
Dz 12 a2 487
7.3 A map colouring problem

This concarns the colouring of a map with at
the most 4 colours In such a way that two adjacent
areas do not have the same colour (example taken
from (Bruynooghe and Pereira 1983)).

Knowledge base :

Map
&)
2 I
12 5 [
i
3 13
L —IT 1o r "
3 —! 3 12
i3
EHE“Q“ binse 1
fnext Blue yellow) t— {nect red blue) <—
(et blue red) — {next red yellaw) —
[yt blum green) <— {next red green) <—
(rast yallow blua) (= [next green blug) ¢=—
(rst yellow rad) Ge— [next green yellow)] G—-

(maxt yellow green} <— [next green red) (=—
{eobouring s] &7 &3 s &5 o8 a7 8 a7 o 10 =11 =12 &7 (e
(nout &1 %) (nest o2 o3 fnoxt =7 «&) (nask ol o 5) (noxt o5 a8)
{rext @6 w11} frext w11 w120 {next #12 »13) (next «% «13)
(rext o9 »10) (rext ol w10) (ooxt o «7) (newt o7 «8)
{roxt «2 #7) (newt o6 « 10) (newt o2 «13) (next o6 w13}
(mext «B «13) (noxt +2 w4) (ngxt o5 %) Inext o3 «5)
{next B &%) (next o] 130 (next o3 o13) (rext o5 «13}
(rext o7 s13) fnext w11 #1730 {next »9 «12) (next «5 =10}
(roexct @10 =13} (next #1 47)

Comparison of three types of exscution :

=L execution under LISLOG.

- M1l execution under METALOG without meta-
clause : the gain here is obtained thanks to
the intelligent backirack mechanism impla-

369

mentad in METALOG & in the event of fallure
on a | literal, backtrack to a resolvent not
containing an instance of L.

= M2 execution under METALOG with addition of
the mataclauss :

(ACTIVATE #r (next «C1 & C2)) ¢— {const
#C1) (const +C2)

Ag poon as a literal appears which la comple-
tely instantiated in the resolvent, the meta-
clause enables the activation of this literal
which has the effect of accelerating the
detection of further failures.

Performances : ssarch for the Tirst solution.

t B mn 32 f oy, 9:;; by B9 A3
Eptl 12a LTEH] 133 | |bean 10
Lz l2a Nz a4 | [paz 8
bty | 827 LR Tha | [by Mgy | 8 783
btz | 4ET nfopgz | 2 158| |bo_ Mgz | 11 229

7.4 Fibonacel function

Knowledge base :

- clauses :(fibo 0 0) <—
(fibo 1 1) <—
(fibo #n srn) <— (fiba (& - &0 1} xm]l)
(fibo (& - #n Z) =m2)
{equal (Z+wml +m2) wrm)
(equal sx wx) ¢(—

- metaclause 1
{(FACTOR «#r (fibo =n #x) {fibo #n #y)) {<—

This metaclause enables the eventual factori-
gation of two literals beginning with the “fibo"
predicate and having the same first argument, to
be requested in & «r resolvent (factorisation =
unificatlaon of the two literals and elimination of
the second of the resalvent). The double recursivity
of the function is transformed into simple recursi-
vity during execution.

First steps of resolution :
1. [Fitro 200 wx)
Z. [Fiba 1% wxl} (fiog 18 «x2) Gequal (& + sxl «x2} i}
Yo (fiba 10 #x3) (fibo 17 ext) (equal (& & ex3 exd) sxl)
FACTOR, (fibo 18 ex2) (equal (& + sxl 4x2) sx}

. (ko 16 g! ({fibo 17 wmi} i v wn? woh) wxl)
= Bl e e

(fibe 17 wxch) (equal (& + w32 oxd) wxl)
{enual (& + sul ax?) sx)
FACTOR E

| -9 ["bn 17 «x4) (fibo 16 exs) [k & sul oxf) wncl)
c(::_::l f&-: wn? wwk) :a'].'.l
fnqult (& & wul sw2) an)

]— 5 [P0 LT wx5) (fibo 16 »x6) (equal (& + wud wxb) =)

370

Parfarmances

3 1n 1% z 50 1o

T 05k 53a 5% ns':;:{:m 1011 yearaw

b 015 o20e 02Te 0.5 1,35
R 34 255 222 Lixiofs 251018,

n L5 2959 32036 &1c0l%s 17108l

L ¥] B8 &3 58 lag s]
gy 9.5 & 566 41108 5, 7yi010,

8 CONCLUSION

We must remember that the kernel of
METALOG interpreter ls a theorsm praver for
Haorn elauses using the LUSH - resalutlen without
restriction (Van Emden 1977). Through the control
metalanguage, the user ean define his resalution
strategy and in certain cases even add a new
inference rule (as, for example, "factorisation").
Therafore, thanks to a powerful set of metaclau-
ges, the user can directly intervene on the process
of Information deduction, and even specify his own
interpreter. This s why we consider METALOG as
a "meta PROLOG",

In the new Implemesntation of METALOG, we
have emphasized performance, as much from the
peint of view of running time as that of memory
requirements. Therefare, the technigue we have
developed fer the implementation of "deferred
objects" avoids the copying of resolvents which
leads to a considerable gain In space. Contrary to
the first version in which METALOG was written In
PROLOG and in which there were, therefore, two
successive levels of interpretation, in the new
implementation, the metacontrol module s
dirsctly Implementead in the Interpreter leading to
a distinct acceleration in execution.

We belisve that the combinastion of the
"object" and "meta" levels {(knowledge/metaknow-
ledge and language/metalanguage) gives to a sys-
tem rmore natural and powerful control expression
facilities than any other technique. If the imple-
mentation of such a system iz well done, one can
get great efficiency in the execution of his pro-
blem, as illustrated by the examples in this paper.

REFEREMNCES

Bourgault S., Dincbes M., Le Pape 1.P., Manusl
LISLOG. CNET, Note Technigue NT/LAA/JSLC/159,
Janvier 1984,

Bowen K., Kowalski R., "Amalgating language and
metalanguage in logic pregramming”. Logic Pro-
gramming,; Academic Press, 1982, p. 153-172.

Bruynooghe M., Pereira L.M., Deduction revision
by Intelligent backtracking. Univ. Mova de |isboa,
Dept. de Infarmatica, July 1983.

Clark K.L., MeCabe F.G., "IC-PROLOG : Language
features", Proc. Logie Programming Workshop,
Debrecan, July 1980, p. 45-52,

Clark K.L., McKeeman W.M., Sickel 5., "Logic
program specification of numerical integration,
Logic Programming, Academic Press, 1982, p, 173-
185.

Colmeraver A., "PROLOG I : Manuel de référence
et modéle théorique". GIA, Facultd des Sciences de
Luminy, Mars 1982,

Davis R., "Meta-rules : ressoning about control.
Artificial Intelligence, wol. 15 n® 3, December
1980, p. 179-222,

Davis R., Buchanan B.G., "Mata-lavel knowledge :
overview and applications”. Proc. IJCAI 1977,
p. 920-927.

Dincbas M., "The METALOG problem salving sys-
tem : an informal presentation”. Proc. Logie Pro-
gramming Workshop, Debrecen, July 1980, p. 80-
1.

Dinebas M., "A knowlsdge-based expert syatem for
automatic enalysis and synthesis in CAD". Proc.
IFIP Congress 1980, Tokyo, October 1980, p. 705-
710,

Fahmi A., "Controle des systémes de déduction
automatique fondés sur la logique™. Thise de
docteur-ingénieur, ENSAE, Movembre 1979,

Gallgire H., Lasserre C., "Cantrolling knowledge
deduction in a declarative approach”. Proc, 1JCAIL
1979, p. 51-56.

Callaire H., Lasserre C., "Metalevel control for
logic programs". Logic Programming, Academic
Press, 1982, p, 173-185,

Hayes P., "Computation end deduction”. Proc,
Math. Foundations of Computer Science Symp.,
Czech. Acad. Science, 1973,

Kowalski R., "Algorithm = Logic + Control™
Comm. ACM, val, 22 n® 7, 1979, p. 424-435,

Kowalski R., Logic for problem solving. Morth-
Holland, 1979,

Pereira L.M.,"Logic control with logic", Proc. lst
Int. Logic Programming Conference, Marseille,
September 1982, p. 9-18,

Porte A., "Epilog : a language for extended pro-
gramming in logic". Proc. lst Int. Logle Program-
ming Conference, Marseille, Sept, 1982, p. 31-37.

Roblnson J.A., Sibert E.E., "LOGLISP : an alterna-
tive to PROLOG". Machine Intelligence 10, 198Z,
p. 399-419,

Van Emden M.H.,, "Programming with reselution
logic"™, Machine Intelligence 8, 1977, p. 266-299.

Weyhrauch R., "Prolegamena to a theory of mecha-
nized formal reasoning”. Artificial Intelligence,
vol. 13, 1980, p. 133-170.

