

 2

VisiRule Tutorial
The contents of this manual describe the product, VisiRule, and are believed correct at time of
going to press. They do not embody a commitment on the part of Logic Programming Associates
(LPA), who may from time to time make changes to the specification of the product, in line with
their policy of continual improvement. No part of this manual may be reproduced or transmitted in
any form, electronic or mechanical, for any purpose without the prior written agreement of LPA.

Copyright (c) 2007 Logic Programming Associates Ltd. All Rights Reserved
Patent application pending

Written by Charles Langley and Clive Spenser

Logic Programming Associates Ltd
Studio 30
The Royal Victoria Patriotic Building
Trinity Road
London SW18 3SX England

phone: +44 (0) 20 8871 2016
fax: +44 (0) 20 8874 0449
email: support@lpa.co.uk
web: http://www.lpa.co.uk

VisiRule is a trademark of Logic Programming Associates Ltd.
5 July, 2007

 3

Contents

VisiRule Tutorial .. 2

Contents .. 3

About This Document .. 5

Intelligent Flowcharts .. 6
What is VisiRule?... 6
Simple Chart... 8
Extended Chart .. 9
Modularity using Continuation Boxes ... 10
Question Types ... 11

Integer Input and Number Input Questions ... 12
Single Choice and Multiple Choice Questions.. 13
Set and Name Input Questions .. 14

Types of Inference Task in VisiRule .. 18
Decision Trees and Decision Tables ... 19
Advisory Systems.. 19
Classification... 23
Diagnostics.. 25

Statement Boxes ... 26
What is a Statement Box? ... 26
Simple Calculations Using Statement Boxes ... 26

Using Statement Boxes with Prolog Databases... 27
Date Handling using Statement Boxes .. 28

Quizzing the User ... 29
Probabilistic Reasoning Using Code Boxes ... 31
Fuzzy Logic using Code Boxes.. 33

WebFlex deployment .. 35

Updating Question Styles ... 37

Appendix 1 .. 40
Creating a New File Type Entry for VisiRule (.VSR) Files ... 40

Windows XP ... 40

 4

Figure 1 - VisiRule architecture... 7
Figure 2 - Simple Chart.. 8
Figure 3 - extended chart .. 9
Figure 4 - modularised chart .. 10
Figure 5 - question types... 11
Figure 6 - numbers and integers... 12
Figure 7 - simple question ... 12
Figure 8 - Multiple Choice questions.. 13
Figure 9 - Name input.. 14
Figure 10 - Typing in free text .. 15
Figure 11 - displaying what has been typed... 15
Figure 12 - A simple set input chart .. 16
Figure 13 - Set input dialog.. 17
Figure 14 - result of set input ... 17
Figure 15 - Two representations ... 19
Figure 16 - Modularilty ... 20
Figure 17 - Solvent Chart ... 22
Figure 18 - Coin classification ... 23
Figure 19 - Coin Sub-trees ... 23
Figure 20 - Tree View .. 24
Figure 21 - Car Diagnostic system .. 25
Figure 22 - Statement Box to do some simple maths... 26
Figure 23 � Accessing a Prolog database .. 27
Figure 24 - Chart to calculate leap years.. 28
Figure 25 - Asking for capital cities ... 29
Figure 26 - Entering the names of the capitals ... 30
Figure 27 - Getting a score .. 30
Figure 28 - Probabilistic reasoning .. 31
Figure 29 - Fuzzy Logic example... 33
Figure 30 - First WebFlex page ... 35

 5

About This Document
This document describes the ideas behind VisiRule, and how to best combine the different
constructs to build potentially complex charts.
.
You should also read the VisiRule User Guide which is supplied by LPA

 6

Intelligent Flowcharts

What is VisiRule?
VisiRule is a tool for creating decision support software purely by drawing flowcharts. The end result
is Flex or Prolog code which is automatically generated, compiled and ready to run, but which can
also be copied and used in a separate program.

Not only can VisiRule be used by people with minimal programming skills. Once you are familiar
with the tool, building an application is like creating a graphical machine. VisiRule also enhances
productivity by considerably reducing the time it takes to produce a decision support system.

VisiRule is an intelligent flowcharting tool in two senses. Firstly, it is used to create knowledge-based
systems and, secondly, it intelligently guides the construction process by constraining what you can
and can't do on the basis of the semantic content of the emerging program. This means for
example, that you cannot inadvertently construct invalid links.

As well as this real time semantic checking, VisiRule also checks the syntax of expressions as they
are entered.

VisiRule provides the automatic construction of menu dialogues from questions. These are
populated by items inferred from expression boxes throughout the flowchart tree which have a path
to the question.

VisiRule also offers:

- a wide variety of question types including single and multiple choice, numeric and integer
entry, text and set entry

- a powerful expression handling logic
- statement boxes for computable answers which are not decided by questioning the user
- code boxes for procedural code and external functions
- modularity allowing multiple charts to define one executable program

In this manual we will see how much can be done simply by using question boxes and expressions
which test the answers to those questions. In particular we can build decision trees, classifiers and
diagnostic systems of arbitrary complexity using these simple tools.

We will then go on to look at more complex applications which involve the use of statement boxes.
These function like question boxes, but instead of asking the user for information, this information is
inferred from what is already known.

Finally, we will look at the use of code boxes which allow the full power of Prolog and its associated
toolkits to be embedded in a chart.

 7

Figure 1 - VisiRule architecture

VisiRule lets you generate code in Flex which in turn gives you access to Prolog

 8

Simple Chart
The simplest VisiRule charts consist of a start box, one or more question boxes, some expression
boxes and some end boxes which are the conclusions drawn from the answers to the questions.

Figure 2 - Simple Chart

 9

Extended Chart
We can extend a chart to include further questions as in the following chart.

Now we have three questions, all single-choice, five expression boxes, one of which is shared, one
start box, one end box and one continuation box. And eleven links.

Figure 3 - extended chart

 10

Modularity using Continuation Boxes
Each of the questions in previous chart can be seen as part of the premise of a rule. For example
the first question represents the premise of the following rule:

1. If the applicant is under 18
2. then reject the overdraft application
3. else check time with bank

The other two rules implicit in figure2 are:

1. If the account is less than 6 months old
2. then reject the overdraft application
3. else check regular income

1. If the applicant does not have a regular income
2. then reject the overdraft application
3. else check amount applied for

We can break down the chart into separate charts, one for each rule, as shown below.

Figure 4 - modularised chart

 11

Question Types
All the questions in the previous charts have been single choice questions which provide a menu of
items with the user asked to choose one.

VisiRule has six distinct question types, each with a different colour as shown below

Yellow Pale Green

Comment

explanation
prompt
Name

explanation
prompt
Set

explanation
prompt
Integer

explanation
prompt
Number

explanation
prompt
Single

explanation
prompt
Multiple

Pink

Salmon

Grey Green

Figure 5 - question types

Single Choice This is the default option. The menu produced will only allow the user
 to select one of the items on the menu.

Multiple Choice This allows the user to select any or none of the items on the menu.

Number Input Instead of a menu, this option provides an input box into which the user
 can enter any number

Integer Input This is like Number Input, but only allows the user to enter an integer.

Set Input An input box is also provided by this option. The user can type in a list
 of items, separated by a space character. For example: red amber green.

Name Input Another input box is provided into which the user can type a word or
 phrase.

 12

Integer Input and Number Input Questions
In the chart shown in figure 5 we have an integer input question box for the amount applied for and
a number input question for the income.

Instead of generating a menu, these question boxes generate a number input prompt as below.

Figure 6 - numbers and integers

Figure 7 - simple question

 13

Single Choice and Multiple Choice Questions

Figure 8 - Multiple Choice questions

You can use a multiple choice question to allow people to chose more than one symptom.
Then the expression handler uses set interpretation semantics when applying operators.
You can also use backtracking to find possible alternative diagnoses.

 14

Set and Name Input Questions

Name Input

Figure 9 - Name input

A Name input question can be used to capture some free text which could be parsed or used as a
database lookup, etc.

 15

Figure 10 - Typing in free text

And then you get:

Figure 11 - displaying what has been typed

 16

Set Input

Set input is similar to name input but returns a list of items

Figure 12 - A simple set input chart

and now we get a slightly different dialog

 17

Figure 13 - Set input dialog

and the result is returned as a comma separated list

Figure 14 - result of set input

 18

Types of Inference Task in VisiRule
Here we look at three types of inference task using VisiRule: Advisory, Classification and Diagnostic,
all of which are typically represented by decision trees. Firstly we need to look at the similarities and
differences of these three tasks.

Advisory Systems
function: to provide advice on options given preferences or facts
examples: advise holiday destination given choice of temperature and terrain
 advise length of holiday entitlement given time worked and legal requirements

Classification Systems
function: to provide advice on facts given other facts
examples: advise on coin type given coin colour and shape
 advise on illness type given symptoms

Diagnostic Systems
function: to provide advice on remedies given symptoms or facts
examples: advise on car repair needed given malfunction
 advise on medicine needed given illness type

In fact, each of these inference tasks is a type of classification since advisory systems classify
options according to preferences or facts and diagnostic systems classify actions according to
symptoms or facts. The difference between them is what it is that they classify and on the basis of
what.

 19

Decision Trees and Decision Tables
A decision tree can be graphically visualised by a tree like structure of nodes and arcs or it can be
textually represented by a decision table.

Take the decision table below (figure 17) which recommends a holiday destination based on
preferred temperature, continent and terrain. The graph to its right shows the structure of the
decision tree which is equivalent to the table.

Although the tree is equivalent to the table it has the advantage of compactness. Some
combinations in the table have no leaf nodes in the tree (those rows marked N/A in the destination
column), perhaps because the travel agent does not offer these combinations. These combinations
simply do not exist as paths through the tree, so the resulting series of questions asked does not
include them.

hot or cold continent terrain destination
cold n_america mountains N/A
cold n_america desert N/A
cold n_america snow Rockies
cold n_america sea Boston
cold n_america rivers Mississippi
cold n_america mixed Victoria
cold asia mountains N/A
cold asia desert N/A
cold asia snow Ladahk
cold asia sea Thailand
cold asia rivers Kashmir
cold asia mixed India
mixed europe mountains Alps
mixed europe desert N/A
mixed europe snow N/A
mixed europe sea Baltic
mixed europe rivers Rhine
mixed europe mixed Ireland
hot s_america mountains N/A
hot s_america desert Venezuala
hot s_america snow N/A
hot s_america sea Bahia
hot s_america rivers Amazon
hot s_america mixed Peru
hot africa mountains N/A
hot africa desert Sahara
hot africa snow N/A
hot africa sea Gambia
hot africa rivers Nile
hot africa mixed Nigeria

Advisory Systems
It is very easy to build such a tree in VisiRule, in fact the tree above is a VisiRule chart with all of the
box fields set to hidden. The reason that they have been hidden is that the tree is too large to
otherwise show on this page. However, the use of continuation boxes makes the chart more
compact, effectively dividing the tree into a number of sub-trees.

Figure 15 - Two representations

 20

Figure 16 - Modularilty

 21

In the next example we have a number of cases where one of the choices, ventilation = poor or
ventilation is fair, is redundant. This redundancy causes unnecessary duplication in the table.

material
class

ventilation rubber solvent

1 poor yes polysol
1 poor no galaxy
1 fair yes polysol
1 fair no galaxy
1 good yes polysol plus
1 good no pulverizer
2 poor yes mtz 80
2 poor no cloripro 1
2 fair yes mtz 80
2 fair no cloripro 1
2 good yes machine saver
2 good no cloripro 2
3 poor yes dgrease
3 poor no acd 100
3 fair yes dgrease
3 fair no acd 100
3 good yes grime stopper
3 good no banish

To eliminate this redundancy we merge poor and fair into one so that there are only two choices for
ventilation.

material
class

ventilation rubber solvent

1 poor or fair yes polysol
1 poor or fair no galaxy
1 good yes polysol plus
1 good no pulverizer
2 poor or fair yes mtz 80
2 poor or fair no cloripro 1
2 good yes machine saver
2 good no cloripro 2
3 poor or fair yes dgrease
3 poor or fair no acd 100
3 good yes grime stopper
3 good no banish

Here is the decision table as a chart below.

 22

Figure 17 - Solvent Chart

 23

Classification
Classification is another task we can easily perform with VisiRule. The following chart classifies any
British coin.

Figure 18 - Coin classification

Figure 19 - Coin Sub-trees

 24

Again we have a tree structure (actually a series of sub-trees) as shown below in figure 20.

Figure 20 - Tree View

 25

Diagnostics
Here is another decision tree, this time for a car diagnostic system.

Figure 21 - Car Diagnostic system

 26

Statement Boxes

What is a Statement Box?
A statement box looks superficially like a question box. However, its function is not to ask the user
for information, but to calculate a value from information that is already known.

Figure 22 - Statement Box to do some simple maths

Statement boxes have three elements:

• an editable name (�balance_plus_order� in figure 2)
• an editable local variable (�X� in figure 2)
• editable Prolog code which is used to calculate the value (�X is balance+order_total�)

Simple Calculations Using Statement Boxes
The above chart shows a typical use of a statement box to calculate a value (balance_plus_order)
from two previously asked questions (order_total and balance).

 27

Using Statement Boxes with Prolog Databases
The next example extends the chart seen earlier and requires that the user knows (or should look
up) the customer�s balance. If this information were held in a database it would be more sensible to
look it up automatically. We can do this in VisiRule by loading in a Prolog database which can then
be referenced directly by a statement box.

Figure 23 � Accessing a Prolog database

In this example the external code (shown in the box on the right) is not represented in the chart,
but is loaded by means of a code box(not shown).

This code contains both a database and auxiliary code to query the database to determine that the
customer exists and lookup the balance. If the name entered is not in the database, it write out a
list of all customers who are.

% customer.pl

known_balance('John Smith',800).
known_balance('Joe Doe',100).
known_balance('Mary Jones',10).

is_customer(X,'yes'):-
 known_balance(X, Bal).
is_customer(X,'no').

show_all:-
 flash('Here is a list of customers'),
 known_balance(X, Bal),
 write(X),nl,
 fail.
show_all.

 28

Date Handling using Statement Boxes
A number of applications will use dates, so the next example will look at how we can handle dates
using statement boxes.

Figure 24 - Chart to calculate leap years

Three statement boxes perform the somewhat complicated calculation which uses the year to
determine whether or not it is a leap year.

Note the use of �\= here, meaning �not equal to�.

We can directly reference the global value year in the statement boxes because it is the name of a
question box asked earlier in the chart.

 29

Quizzing the User

Figure 25 - Asking for capital cities

Here is the Prolog code loaded from the file extras.pl.

% given a list L1, this will walk thru that list looking
% to see which are in the database defined by town
% it returns them as a list X and counts its length
mem_both(L1, X, Number) :-

lwrupr_list(L1, L2), % always convert entries to lower case
sort(L2, L3), % sort is an easy way to remove duplicates
findall(P, (member(P,L3),town(P)), X),
length(X, Number).

% convert all items in the input list into lower case items
lwrupr_list([], []).
lwrupr_list([Hd|Tl], [LowHd|LowTl]) :-

lwrupr(LowHd, Hd),
lwrupr_list(Tl, LowTl).

town(london).
town(paris).
town(dublin).
town(madrid).
town(amsterdam).
town(rome).

 30

If we run the chart we get a dialog asking us to name some capitals.

Figure 26 - Entering the names of the capitals

VisiRule will tell us how many are known to be capitals (i.e. in the file)

Figure 27 - Getting a score

 31

Probabilistic Reasoning Using Code Boxes
In this example we load a prolog file which uses Bayesian probability to determine the likelyhood of
a car insurance claim being fraudulent.

Figure 28 - Probabilistic reasoning

Here is the code loaded.

:- ensure_loaded(system(flint)).

claim(probability, M1, M2, M3) :-
restart,
uncertainty_value_reset(probability),
uncertainty_value_set(probability, recovered_burnt_out, yes, M1),
uncertainty_value_set(probability, registration_s, yes, M2),
uncertainty_propagate(probability, [r1,r2]),
uncertainty_value_get(probability, fraud, yes, M3).

uncertainty_rule(r1) :-
if recovered_burnt_out is yes affirms 2.20 denies 0.20
then fraud is yes.

uncertainty_rule(r2) :-
if registration_s is yes affirms 1.20 denies 0.95
then fraud is yes.

 32

and the answer the next question

and then we get an answer

 33

Fuzzy Logic using Code Boxes
An example which uses fuzzy logic to apply the appropriate brake force to a train given its current
speed and distance from the buffers.

Figure 29 - Fuzzy Logic example

The Prolog file sim_train.pl contains something like:

:- ensure_loaded(system(flint)).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Propagation of fuzzy values %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
apply_brakes(BufferDistance, TrainSpeed, BrakeForce) :-

apply_brakes(Method, BufferDistance, TrainSpeed, BrakeForce).

apply_brakes(Method, BufferDistance, TrainSpeed, BrakeForce) :-
Method = bounded_range,
uncertainty_value_reset(fuzzy),
fuzzify(buffer_distance, BufferDistance),
fuzzify(train_speed, TrainSpeed),
uncertainty_propagate(fuzzy, braking_matrix),
defuzzify(brake_force, BrakeForce, Method).

%%%%%%%%%%%%%%%%%%%
% Fuzzy variables %
%%%%%%%%%%%%%%%%%%%

fuzzy_variable(buffer_distance) :-

 34

[0 , 1000] ;
low, \, linear, [0, 500] ;
medium, /\, linear, [0, 500, 1000] ;
high, /, linear, [500, 1000] .

fuzzy_variable(train_speed) :-
[0 , 150] ;
low, \, linear, [0, 75] ;
medium, /\, linear, [0, 75, 150] ;
high, /, linear, [75, 150] .

fuzzy_variable(brake_force) :-
[0 , 100] ;
very_low, \, linear, [0, 25] ;
medium, /\, linear, [25, 50, 75] ;
very_high, /, linear, [75, 100] .

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% FAM - Fuzzy Associative Memory %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

uncertainty_matrix(braking_matrix) :-

buffer_distance * train_speed -> brake_force ;

low * _ -> very_high ;
_ * high -> very_high ;
medium * medium -> medium ;
medium * low -> medium ;
high * medium -> medium ;
high * low -> very_low .

When we run this chart we get prompted for 2 input values and the will get back an output value.

 35

WebFlex deployment

Let's take the Hello World chart and publish it on the web using WebFlex.

(This presumes that we have already installed and tested WebFlex as per the WebFlex User Guide).

There are a number of steps we must go thru to get the chart published on the internet.

1) Export the chart as KSL code.
This creates a Flex version of our chart on disk called HELLO.KSL

2) Then add into the file HELLO.KS:

relation run if 'My program'(Conclusion) and write(Conclusion).

This line links the main goal in the WebFlex.ini file to the name of our start box.
Remember to save the file after making the edit.

3) Copy/move the HELLO.KSL file into the correct WebFlex directory, probably something like:
C:\InetPub\pws\Exec\flx\examples

4) Update the WebFlex.ini by adding in some extra entry:

[vr2]
main_goal=run

5) Now you can paste into your browser (or create a HTML page with this as an entry):

http://localhost/pws_exec/flx/webflex.exe?webflex=vr2

Figure 30 - First WebFlex page

 36

6) We can extend the KSL file with some question styles.

For instance, we can add the following to the KSL file:

frame greeting_style ;

default method is radio .

frame greeting_style ;

default rows is 2 .

 37

Updating Question Styles
We can use a small Prolog program to update the styles dynamically at runtime.
Let's take the AUTO.VSR chart for example.
Let's save it as KSL.

Now here's some code to define the style frames dynamically.
go :-

isa_question(Name, A, L, P),
L = single(Group),
cat([Name,'_style'],FrameName,_),
new_frame(FrameName, []),
new_default(method, FrameName, radio),
fail .

go.

Save this code into a file called, say, update_styles.pl and save it in the SYSTEM folder within the
WebFlex installation.
Now, we must add something into the AUTO.KSL file to load this file and call the 'go' program.

do ensure_loaded(system(update_styles)) .

relation run if

go and start(Conclusion) and write(Conclusion) .

Now either add a new entry into the WebFlex.ini file or save this back into the VR2.KSL file.

Now when we execute the chart, and all the questions will be presented as radio buttons.

 38

We can use the same utility with the FAB.VSR chart

 39

And we can extend the utility to deal with other question types.

 40

Appendix 1

Creating a New File Type Entry for VisiRule (.VSR) Files
This appendix shows you how to set up Windows so that whenever you double-click on a VisiRule
(.VSR) file, it is opened into a VisiRule window within the WIN-PROLOG development environment.

Windows XP
- Double click on the "My Computer" icon. From the window that opens (either the "My Computer"

folder or the "Windows Explorer" window) open the 'Tools' menu and select the "Folder
Options..." entry.

- From the "Folder Options" dialog that appears, select the "File Types" tab.

Within the Folder Options dialog,
- Click on the "New" button to create a new file type entry for .VSR files.
- When the "Create New Extension" dialog appears, enter "VSR" in the "File Extension:" field and

then click OK.
- Within the Folder Options dialog, locate and select the VSR entry in the 'Registered file types:'

list. Click on the Advanced button to display the Edit File Type dialog.
- Click on the 'New�' button to display the 'New Action' dialog. Enter into the 'Action:' field

something like 'Open With VisiRule' or whatever you want the textual name of the action to be;
this will eventually become an entry in the menu that appears when you right-click over a .VSR
file.

- Click on the 'Browse' button to locate and select the PRO386W.EXE file. You should now have:
�\program files\win-prolog 4700\pro386w.exe" in the 'Application used to perform action:'
field.

- Click in the 'Application used to perform action:' field and navigate to the end of the line and
append the following to the existing text: ensure_loaded(system(visirule)),
system_menu(_,file,open('%1')).

- This will load the .VSR file into a VisiRule window within the WIN-PROLOG development
environment. Ensure that you leave a space character between the bit in double quotes and the
Prolog goal. The bit in double quotes (i.e. "c:\program files\win-prolog 4700\pro386w.exe") is
the path to your installation of WIN-PROLOG. The double quotes must be included if spaces are
present in the path or file name. The "%1" in "system_menu(_,file,open('%1'))." will get replaced
by the full pathname of the .VSR file you later double click on.

- Click the "OK" button. The action you have just added should appear in the 'Actions' list on the
Edit File Type dialog. Click OK on the Edit File Type dialog. Click Close on the Folder Options
dialog.

 41

Windows ME
- Double click on the "My Computer" icon. From the options that appear, open �Control Panel� and

select the "Folder Options..." entry.
- From the "Folder Options" dialog that appears, select the "File Types" tab.

Within the Folder Options dialog,
- Click on the "New" button to create a new file type entry for .VSR files. Type �.vsr� in the dialog

that appears and click on OK.
- Again within the Folder Options dialog, make sure that the file extensions tab is current and

select the new .vsr entry in the list box.
- Click on the Change button and click on Other in the dialog which appears. Under File Name

type in: �c:\program files\win-prolog 4700\pro386w.exe" ensure_loaded(system(visirule)),
system_menu(_,file,open('%1')) which will load the .VSR file into a VisiRule window within the
WIN-PROLOG development environment.

- Ensure that you leave a space character between the bit in double quotes and the Prolog goal.
The bit in double quotes (i.e. "c:\program files\win-prolog 4500\pro386w.exe") is the path to
your installation of WIN-PROLOG. The double quotes must be included if spaces are present in
the path or file name. The "%1" in "system_menu(_,file,open('%1'))." will get replaced by the full
pathname of the .VSR file you later double click on.

- Click on OK and close the folder options dialog.

	VisiRule Tutorial
	Contents
	Figure 1 - VisiRule architecture	7
	About This Document
	Intelligent Flowcharts
	What is VisiRule?

	VisiRule lets you generate code in Flex which in turn gives you access to Prolog�Simple Chart
	Extended Chart
	Modularity using Continuation Boxes
	Question Types
	Integer Input and Number Input Questions
	Single Choice and Multiple Choice Questions
	Set and Name Input Questions

	Types of Inference Task in VisiRule
	Decision Trees and Decision Tables
	Advisory Systems
	Classification
	Diagnostics

	Statement Boxes
	What is a Statement Box?
	Simple Calculations Using Statement Boxes
	Using Statement Boxes with Prolog Databases
	Date Handling using Statement Boxes

	Quizzing the User
	Probabilistic Reasoning Using Code Boxes
	Fuzzy Logic using Code Boxes

	WebFlex deployment
	Updating Question Styles
	Appendix 1
	Creating a New File Type Entry for VisiRule (.VSR) Files
	Windows XP

