

VisiRule Tutorial

The contents of this manual describe the product, VisiRule, and are believed correct at time of
going to press. They do not embody a commitment on the part of Logic Programming Associates
(LPA), who may from time to time make changes to the specification of the product, in line with
their policy of continual improvement. No part of this manual may be reproduced or transmitted in
any form, electronic or mechanical, for any purpose without the prior written agreement of LPA.

Copyright () 2007 Logic Programming Associates Ltd. All Rights Reserved
Patent application pending

Written by Charles Langley and Clive Spenser

Logic Programming Associates Ltd
Studio 30

The Royal Victoria Patriotic Building
Trinity Road

London SW18& 3SX England

phone: +44 (0) 20 8871 2016
fax: +44 (0) 20 874 0449
email: support@Ilpa.co.uk

web: http://www.lpa.co.uk

VisiRule is a trademark of Logic Programming Associates Ltd.
5 July, 2007

Contents

VISIRULE TULOVIAL c.uuuenennennnnaenonnneennnernsnerosneiossnsiosssenossssisssnses 2
CORLERLS c.uuneeennnerensuvnosserosssiossssrsss 3
ADOUL TRHIS DOCURIERL «....oneaennneeerosnveiossvesssssrssssassses 5
INLEllIGENE FIOWCRAFLS c.uneuenneneronnnerosneicssnerossssiossssisssssnssansssses 6
What is VisiRule?. 6
Simple Chart 8
Extended Chart 9
Modularity using Continuation Boxes 10
Question Types . 11
Integer Input and Number INnput QUESTIONSveeierieriieiieieeiesee ettt eee et et eseeenaeeeaessaeseees 12
Single Choice and Multiple Choice QUESLIONS.........ccvieiueriierieriientieieeteeteseeete e seeseeeeeeeeeenesseeseens 13

Set and Name INput QUESLIONSc.veivieriieeieieeie ettt et et et e etesaessaesseesseensesnnesneesseenseenseens 14
Types of Inference Task in VisiRule 18
Decision Trees and Decision Tables..........ccuivierierieriieieeieeieseeie ettt ese e enees 19
AQVISOTY SYSTEINIS.uvieueieiieetietieteetestesttestee st eteetesatesseesseesseessessaessaenseensesssesssesseeseenseansesnsesnsesssesnnes 19

(O T U T2 (o) PP SS 23
DIAGNOSTICS. ..t euteeeteetietteteeteeete st te st e bt et e st e setesse e st enseesaeesaesseenseensesnsesseesseenseenseanseensenseenseenseenseennennnas 25
STALCIENL BOXES «ouuvvneeeevsuvviosarissarnisenssssnssssisssssisss 26
What is a Statement Box? 26
Simple Calculations Using Statement Boxes 26
Using Statement Boxes with Prolog Databases...........c.evveriiriieiienienieie et 27
Date Handling using Statement BOXESccvevuieiieierieiieie ettt ettt ssaesseennees 28
QUIZZING THE USEE anunnnennaennnecnrennerirninsnnessenssnisssessssesssesssssssssssssssssesssssssssssssssssssssssssassss 29
Probabilistic Reasoning Using Code Boxes 31
Fuzzy Logic using Code Boxes 33
WeEDFIEX ACPIOPHIERL c......unuueenneeiosneensarinssarisssaressssnssssssssssssssssssssssssssssssssssssnsssssssssssnss 35
Updating QUeSTION STPLESauueeeveeneivsueivssueicssnnnsssanissssrissssnssssssssssssssssssssssssssssssssssssssns 37
APPORAIX 1 auuanannaennnaninnnerinsnrissnniossnnrossssiossnass 40
Creating a New File Type Entry for VisiRule (.VSR) Files 40
WINAOWS XP ..ottt et et ettt et e e s et e e st enseenseensesssesstesseeseenseenseenseansennsesnsesnnes 40

Figure 1 - VISIRUIE @rChiteCIUI e 7

FIgQure 2 - SImPle CNart. .. e 8
Figure 3 - extended CNart ... 9
Figure 4 - modularised Charto e 10
FIQUIE D - QUEBSTION By DS . it e 11
Figure 6 - NUMDEIS @Nd INTEGOIS. e 12
Figure 7 - SIMPIe QUESTION ... e 12
Figure 8 - Multiple ChoICe QUESTIONSt 13
FIQUIE O = AN M PUL. .. e e e e e e e e 14
Figure 10 - Typing iN fTee LXKt . . 15
Figure 11 - displaying what has been typedo 15
Figure 12 - A simple et iNPUL Chart.. ... 16
Figure 13 - St INPUL AIAIOQ e e 17
Figure 14 - result Of SeT iNPUL e 17
Figure 15 - TWO rePreSENTAtiIONSot 19
FIGQUre 16 - MOAUIGMIIEY ... oo e e e e e e e e e 20
FIgure 17 - SOIVENt CNart . e 22
Figure 18 - CoiN ClassifiCationot 23
FIgure 19 - COIN SUD-IIEOS .. 23
FIGUIE 20 - Tree VIBW ..o 24
Figure 21 - Car DIagnostiC SY S oM .. .o 25
Figure 22 - Statement Box to do some simple Maths.........o.ooiiii 26
Figure 23 — Accessing a Prolog databasecooiiiiiiiiii 27
Figure 24 - Chart to CalCUIALE 1@AP Y AIS. e 28
Figure 25 - Asking for Capital Cities 29
Figure 26 - Entering the names of the Capitals ..o 30
FIGQUre 27 - GetlING @ SCOM ..ot e e 30
Figure 28 - ProbabilistiC reasOniNgGoouiiiii e 31
Figure 29 - FUzzy LOGIC @XamMIPle e 33
Figure 30 - First WebFIeX PAgottt 35

About This Document

This document describes the ideas behind VisiRule, and how to best combine the different
constructs to build potentially complex charts.

You should also read the VisiRule User Quide which is supplied by LPA

Intelligent Flowcharts

What is VisiRule?

VisiRule is a tool for creating decision support software purely by drawing flowcharts. The end result
is Flex or Prolog code which is automatically generated, compiled and ready to run, but which can
also be copied and used in a separate program.

Not only can VisiRule be used by people with minimal programming skills. Once you are familiar
with the tool, building an application is like creating a graphical machine. VisiRule also enhances
productivity by considerably reducing the time it takes to produce a decision support system.

VisiRule is an intelligent flowcharting tool in two senses. Firstly, it is used to create knowledge-based
systems and, secondly, it intelligently guides the construction process by constraining what you can
and can't do on the basis of the semantic content of the emerging program. This means for
example, that you cannot inadvertently construct invalid links.

As well as this real time semantic checking, VisiRule also checks the syntax of expressions as they
are entered.

VisiRule provides the automatic construction of menu dialogues from questions. These are
populated by items inferred from expression boxes throughout the flowchart tree which have a path
to the question.

VisiRule also offers:

- a wide variety of question types including single and multiple choice, numeric and integer
entry, text and set entry

- a powerful expression handling logic

- statement boxes for computable answers which are not decided by questioning the user

- code boxes for procedural code and external functions

- modularity allowing multiple charts to define one executable program

In this manual we will see how much can be done simply by using question boxes and expressions
which test the answers to those questions. In particular we can build decision trees, classifiers and
diagnostic systems of arbitrary complexity using these simple tools.

We will then go on to look at more complex applications which involve the use of statement boxes.
These function like question boxes, but instead of asking the user for information, this information is
inferred from what is already known.

Finally, we will look at the use of code boxes which allow the full power of Prolog and its associated
toolkits to be embedded in a chart.

A Multi-tiered Toolset

VisiRule
Flex
WinProlog

Integration with VB, Delphi, ODBC

Figure 1 - VisiRule architecture

VisiRule lets you generate code in Flex which in turn gives you access to Prolog

Simple Chart
The simplest VisiRule charts consist of a start box, one or more question boxes, some expression
boxes and some end boxes which are the conclusions drawn from the answers to the questions.

W -PROLOG - [el vsr] (=13
Bl Edt Seanch Pum Optons PFeg Wedew heip = || =

The "Helo YWorkd sxample ?

gresting
Flease chadse a8 grasiing
Because | want to know what to do

| /_: _\\dh :

Figure 2 - Simple Chart

~

Extended Chart
We can extend a chart to include further questions as in the following chart.

Now we have three questions, all single-choice, five expression boxes, one of which is shared, one
start box, one end box and one continuation box. And eleven links.

B WINPROLDG - [apply.wsr]
B e £k Gewch fun Gphiom Fay edom b -8 x

e

Of Legal Age
Is the applicant over 1687
This 1= a legal requiremsnt

U {1
&

PLT: i :
Tima wath Bank
(W] '

m|

Has the account besn opsn
for 6 months or mora?

!

oS

Regular Income
Dioes the applicant have
a regular incoms?

!

YO

Figure 3 - extended chart

Modularity using Continuation Boxes

Each of the questions in previous chart can be seen as part of the premise of a rule. For example
the first question represents the premise of the following rule:

1. If the applicant is under 18
2. then reject the overdraft application
3. else check time with bank

The other two rules implicit in figure2 are:

1. If the account is less than 6 months old

2. then reject the overdraft application

3. else check regular income

1. If the applicant does not have a regular income
2. then reject the overdraft application

3. else check amount applied for

We can break down the chart into separate charts, one for each rule, as shown below.

5 OWH-PRILDG - [apply_splilved]

[Ble G Jeach flun Opii Flex Medow Help = N
~
o (a2
Of Lapal Age Time with Bank
Is the applicant over 167 Has the aecount been apen
This iz a legal requirsmeant tor & months or mors?

E/\ FHHN
S uafffnseii o
)

Ragular Income
Do (v Applicant hinae
& regular income?

o Ca
Ml

5.'&5

Figure 4 - modularised chart

Question Types

All the questions in the previous charts have been single choice questions which provide a menu of
items with the user asked to choose one.

VisiRule has six distinct question types, each with a different colour as shown below

R OE

Yellow Salmon Pale Green
Grey Green Fnk Conment

Figure 5 - question types

Single Choice This is the default option. The menu produced will only allow the user
to select one of the items on the menu.

Multiple Choice This allows the user to select any or none of the items on the menu.

Number Input Instead of a menu, this option provides an input box into which the user
can enter any number

Integer Input This is like Number Input, but only allows the user to enter an integer.

Set Input An input box is also provided by this option. The user can type in a list
of items, separated by a space character. For example: red amber green.

Name Input Another input box is provided into which the user can type a word or
phrase.

11

Integer Input and Number Input Questions
In the chart shown in figure 5 we have an integer input question box for the amount applied for and

a number input question for the income.

ra I WEs

Figure 6 - numbers and integers

Instead of generating a menu, these question boxes generate a number input prompt as below.

== 1 yped Input x|
Prompt:
what is the amount applied for? =]

Explain... |

[

Figure 7 - simple question

Single Choice and Multiple Choice Questions

conail

Eymptoms
which of Mase Symptoms 40 wou havat
this wAll help wour dagnoss

! : ‘

*= |d"|.'_|.'l.'n|.n;'|_ge1'ru|-:||_n'umsu]_j »= [runny_rnoss sneezing) J »= [breatnlkessness whesazing]| J

L
Bl ETE
do you heve & reaciion bo dust or pollien® 10
besausge g wiould Suggest Hyleser

* »
1= [fover] == ||fianmr]

'
W

Figure 8 - Multiple Choice questions

You can use a multiple choice question to allow people to chose more than one symptom.
Then the expression handler uses set interpretation semantics when applying operators.
You can also use backtracking to find possible alternative diagnoses.

15

Set and Name Input Questions

Name Input

Figure 9 - Name input

A Name input question can be used to capture some free text which could be parsed or used as a
database lookup, etc.

14

X]

m= [yped Input

Prompt:
“What is your question?

What is the meaning of life? Ok,

Esplain...

Figure 10 - Typing in free text

And then you get:

flex le

! "l,, wehat is the meaning of life?

Figure 11 - displaying what has been typed

Set Input

Set input is similar to name input but returns a list of items

Figure 12 - A simple set input chart

and now we det a slightly different dialog

16

X]

m= [yped Input

Prompt:
“What do you like to drink?

tea beer coffee| Ok

Esplain...

Figure 13 - Set input dialog

and the result is returned as a comma separated list

flex r5_<|

! "‘\ [tea,beer, coffee]

Figure 14 - result of set input

17

Types of Inference Task in VisiRule

Here we ook at three types of inference task using VisiRule: Advisory, Classification and Diagnostic,
all of which are typically represented by decision trees. Firstly we need to look at the similarities and
differences of these three tasks.

Advisory Systems
function: to provide advice on options dgiven preferences or facts
examples: advise holiday destination given choice of temperature and terrain
advise length of holiday entitlement given time worked and legal requirements

Classification Systems

function: to provide advice on facts given other facts

examples: advise on coin type given coin colour and shape
advise on iliness type given symptoms

Diagnostic Systems
function: to provide advice on remedies given symptoms or facts
examples: advise on car repair needed given malfunction

advise on medicine needed given iliness type

In fact, each of these inference tasks is a type of classification since advisory systems classify
options according to preferences or facts and diagnostic systems classify actions according to
symptoms or facts. The difference between them is what it is that they classify and on the basis of
what.

18

Decision Trees and Decision Tables

A decision tree can be dgraphically visualised by a tree like structure of nodes and arcs or it can be

textually represented by a decision table.

Take the decision table below (figure 17) which recommends a holiday destination based on
preferred temperature, continent and terrain. The graph to its right shows the structure of the

decision tree which is equivalent to the table.

Although the tree is equivalent to the table it has the advantage of compactness. Some

combinations in the table have no leaf nodes in the tree (those rows marked N/A in the destination
column), perhaps because the travel agent does not offer these combinations. These combinations

simply do not exist as paths through the tree, so the resulting series of questions asked does not

include them.

hot or cold continent terrain destination
cold n america mountains N/A
cold n america desert N/A
cold n_america SNOW Rockies
cold n_america sea Boston
cold n_america rivers Mississippi
cold n_america mixed Victoria
cold asia mountains N/A
cold asia desert N/A
cold asia SNOW Ladahk
cold asia sea Thailand
cold asia rivers Rashmir
cold asia mixed India
mixed europe mountains Alps
mixed europe desert N/A
mixed europe snow M/A
mixed europe sea Baltic
mixed europe rivers Rhine
mixed europe mixed Ireland
hot s america mountains N/A

hot S america desert Venezuala
hot s america snow N/A

hot S america sea Bahia
hot S america rivers Amazon
hot S america mixed Peru
hot africa mountains N/A

hot africa desert Sahara
hot africa snow N/A

hot africa sea Gambia
hot africa rivers Nile

hot africa mixed Nigeria

Advisory Systems

Figure 15 - Two representations

It is very easy to build such a tree in VisiRule, in fact the tree above is a VisiRule chart with all of the

box fields set to hidden. The reason that they have been hidden is that the tree is too large to
otherwise show on this page. However, the use of continuation boxes makes the chart more

compact, effectively dividing the tree into a number of sub-trees.

19

tart

|.:|.:. waou prefer hot or cold holidays" |

;| I
|‘?=h-:|t "//l?:cc.m | |?=mixed |
] ! !

|ho‘t_h-:-|ida1,rs | |c-:-|d_h-:-|ida'5.rs | |eurc-pe_h-:-|ida1,rs |

hot_holiday s cald_holidays

| which continent da wou prefers which cortinent do you prefer? |
Y e Y

7 = zouth_america | 7 = africa | |? = north_america | | 7 = azia

o] e] [E]

niorth_america

|l.uhich temain do you prefer? |

’r‘ zed
| europe_holiday=
| which temain do wou prefer? | |Luhich temain do you prefer? |
Y= rivers "r‘ mauntains "r‘ mixed Y= zea '7-‘ rivers "r‘ mixed "r‘ zed

-hﬁ e -h-h

|u.lhich termain do you prefer? | which termain do you prefer? |

\\ /”/

= nivers ’r‘ Snaw ’r‘ mixed ’-‘ sed ’-‘ rivers ’-‘ dezert ’r‘ mixed

e e ek - i

Figure 16 - Modularilty

20

In the next example we have a number of cases where one of the choices, ventilation = poor or
ventilation is fair, is redundant. This redundancy causes unnecessary duplication in the table.

material ventilation
class

poor
poor
fair
fair
good
good
poor
poor
fair
fair
good
good
poor
poor
fair
fair
good
good

WWUWUWWWNNNNNNRFERF - =

rubber

yes
no
yes
no
yes
no
yes
no
yes
no
yes
no
yes
no
yes
no
yes
no

solvent

polysol
galaxy
polysol
galaxy

polysol plus
pulverizer
mtz 80
cloripro 1

mtz 80
cloripro 1
machine saver
cloripro 2
ddrease

acd 100
ddrease

acd 100
drime stopper
banish

To eliminate this redundancy we merge poor and fair into one so that there are only two choices for

ventilation.

material ventilation
class

poor or fair
poor or fair
good
good
poor or fair
poor or fair
good
good
poor or fair
poor or fair
good
good

WWWWNNNNFE =~

rubber

yes
no
yes
no
yes
no
yes
no
yes
no
yes
no

solvent

polysol
galaxy

polysol plus
pulverizer
mtz 80
cloripro 1
machine saver
cloripro 2
ddrease

acd 100
drime stopper
banish

Here is the decision table as a chart below.

21

Figure 17 - Solvent Chart

22

Classification

Classification is another task we can easily perform with VisiRule. The following chart classifies any
British coin.

Erdish Coinags kderlification
T S
slvar] b]w]y:li;i_lnd_ilm }

Figure 18 - Coin classification

zsize_of_seven_sided J I

. sizE_Df_silver_rl:uund_rl:uugrj
/ \‘ size_of_smooth_round J \
sl large v stmall J latge

large J
.

Figure 19 - Coin Sub-trees

e

small

Wi

i

=

23

Adain we have a tree structure (actually a series of sub-trees) as shown below in figure 20.

S8 e

Figure 20 - Tree View

24

Diagnostics
Here is another decision tree, this time for a car diagnostic system.

?

dea s the angne stai?]—- i

Aujlemslive Exgert I_

Eyslam
i I fivas this angine rolala? J—l- fio

a6 P deas the argne nn?] s r— is the battary chasged® |

‘ _:_J 1,,*..5,;.&.;.““? P _l_J *

l!-"'l!' !rgrlr wyggsh?

is thie o onductivitg 1sesl B ihs i
T mm“-:l i

yos jl— dras the engine misfie]

* ll “h!"!lh B-'.Il'hl:ll gate of |ha pamni: l

Figure 21 - Car Diagnostic system

25

Statement Boxes

What is a Statement Box?

A statement box looks superficially like a question box. However, its function is not to ask the user
for information, but to calculate a value from information that is already known.

Figure 22 - Statement Box to do some simple maths

Statement boxes have three elements:

e an editable name (‘balance_plus_order’ in figure 2)
¢ an editable local variable ("X’ in figure 2)
* editable Prolog code which is used to calculate the value (‘X is balance+order_total’)

Simple Calculations Using Statement Boxes

The above chart shows a typical use of a statement box to calculate a value (balance_plus_order)
from two previously asked questions (order_total and balance).

26

Using Statement Boxes with Prolog Databases

The next example extends the chart seen earlier and requires that the user knows (or should look
up) the customer’s balance. If this information were held in a database it would be more sensible to
look it up automatically. We can do this in VisiRule by loading in a Prolog database which can then
be referenced directly by a statement box.

% customer.pl

known balance(John Smith',800).
known balance(Joe Doe',100).
known balance('Mary Jones', 10).

is_customer(X,'yes'):-
known_balance(X, Bal).
is customer(”,'no’.

show_all:-
flash(Here is a list of customers)),
known_balance(X, Bal),
write(X),nl,
fail.

show_all.

Figure 23 — Accessing a Prolog database

In this example the external code (shown in the box on the right) is not represented in the chart,
but is loaded by means of a code box(not shown).

This code contains both a database and auxiliary code to query the database to determine that the

customer exists and lookup the balance. If the name entered is not in the database, it write out a
list of all customers who are.

27

Date Handling using Statement Boxes

A number of applications will use dates, so the next example will look at how we can handle dates

using statement boxes.

1533 reders o e date
the gragonan calkndar was

irtroduced in laly {amang otters)

15 Cictober 1552
|enua|::.r or
march or 5
melel year > 1562 o I
Uy or
augual or

Cakculats e actabsar ar
number of degg dedember
in a mermn

7 yoor =< 1531] k=0

Figure 24 - Chart to calculate leap years

Three statement boxes perform the somewhat complicated calculation which uses the year to
determine whether or not it is a leap year.

Note the use of "\= here, meaning ‘not equal to".

—_—

We can directly reference the global value year in the statement boxes because it is the name of a

question box asked earlier in the chart.

28

Quizzing the User

cities
Howi m

Figure 25 - Asking for capital cities

Here is the Prolog code loaded from the file extras.pl.

%given a list L1, this will walk thru that |ist |ooking
%to see which are in the database defined by town
% it returns themas a list X and counts its length
mem bot h(L1, X, Number) :-
[wrupr_list(L1, L2), % al ways convert entries to | ower case

sort(L2, L3), % sort is an easy way to renove duplicates

findall (P, (nenmber(P,L3),town(P)), X),
[ength(X, Nunber).

% convert all itenms in the input list into | ower case itens
[wrupr _list([],).
[wrupr list([HA]TI], [LowHd|LowTl]) :-

[wrupr(LowHd, Hd),

[wrupr list(T, LowTl).

town(london).
town(paris).
town(dublin).
town(madrid).
town(amsterdam).
town(rome).

29

If we run the chart we get a dialog asking us to name some capitals.

m= Typed Input le

Prompt:

How many capitals of Europe can you name?
Enter them separated by space

Esplain...

paris London cork] 1[4
[Cigmtn. |

Figure 26 - Entering the names of the capitals

VisiRule will tell us how many are known to be capitals (i.e. in the file)

flex [5_<|

' E You remembered 2
L

Figure 27 - Getting a score

Probabilistic Reasoning Using Code Boxes

In this example we load a prolog file which uses Bayesian probability to determine the likelyhood of
a car insurance claim being fraudulent.

burned_out J

¥
registration_s J

-"‘"--..,.I
¥ES no I

9 burmed_out = 'g..'e-s.J ? bumed_out = na J Y burned_out = !.n'-EEJ 7 bumed_cit = no J

Figure 28 - Probabilistic reasoning

Here is the code loaded.
;- ensure_| oaded(systenm(flint)).

clainm(probability, M, M, M3) :-
restart,

uncertainty value reset(probability),
uncertai nty val ue_set(probability, recovered burnt_out, yes, M),
uncertai nty_val ue_set (probability, registration_s, yes, M),
uncertai nty_propagat e(probability, [r1,r2]),
uncertai nty_val ue_get (probability, fraud, yes, M).

uncertainty rule(r1) :-
if recovered _burnt_out is yes affirme 2.20 denies 0.20
then fraud is yes.

uncertainty rule(r2) :-

if registration_s is yes affirme 1.20 denies 0.95
then fraud is yes.

31

m= Single Choice Options Menu

X]

Prompt:
Was the Car Burnt out

no

and the answer the next question

m= Single Choice Options Menu E'

Prompt:
YWas the Car an 5 Reg

es] 4 |
—

and then we get an answer

flex rg|

! "-q,, probability of fraudis 19

32

Fuzzy Logic using Code Boxes

An example which uses fuzzy logic to apply the appropriate brake force to a train given its current

speed and distance from the buffers.

< 5000

i ——

Figure 29 - Fuzzy Logic example

The Prolog file sim_train.pl contains something like:

.- ensure_| oaded(system(flint)).

(Bu ance, TrainSpeed, BrakeForce) :-
kes(, BufferDistance, TrainSpeed, BrakeForce).

apply brakes(Method, BufferDi stance, TrainSpeed, BrakeForce) :-
Met hod = bounded_r ange,
uncertainty val ue reset(fuzzy),
fuzzify(buffer_distance, BufferDi stance),
fuzzify(train_speed, Tr ai nSpeed),
uncertainty propagate(fuzzy, braking matrix),
defuzzify(brake_force, BrakeForce, Method).

%BBB888L888888888880
% Fuzzy vari abl es %
%BBB888L8B8B8E88888N

fuzzy variable(buffer_distance) :-

33

[0, 1000] ;

| ow, \, linear, [0, 500 1 ;
medi um /\, linear, [0O, 500, 1000] ;
hi gh, /, linear, [500, 1000]
fuzzy variable(train_speed) :-
[0, 150] ;
| ow, \, linear, [0, 75 1 ;
medium /\, linear, [O, 75, 150] ;
hi gh, /, linear, [75, 150]
fuzzy variable(brake_force) :-
[0, 1007 ;
very low, \, linear, [0, 25 1
medi um /\, linear, [25, 50, 75 1
very high, /, linear, | 75, 100]

uncertainty matrix(braking matrix) :-

buf fer_distance * train_speed -> brake force ;

| ow * -> very_high ;

* high -> very_high ;
nmedi um * medium -> medium ;
medi um * | ow -> medium ;
hi gh * medi um -> nedium ;
hi gh * | ow -> very_ |l ow .

When we run this chart we get prompted for 2 input values and the will get back an output value.

WebFlex deployment

Let's take the Hello World chart and publish it on the web using WebFlex.
(This presumes that we have already installed and tested WebFlex as per the WebFlex User Guide).
There are a number of steps we must go thru to get the chart published on the internet.

1) Export the chart as KSL code.
This creates a Flex version of our chart on disk called HELLO.KSL

2) Then add into the file HELLO.KS:

relation run if "My program (Conclusion) and wite(Conclusion).

This line links the main goal in the WebFlex.ini file to the name of our start box.
Remember to save the file after making the edit.

3) Copy/move the HELLO.KSL file into the correct WebFlex directory, probably something like:
C\InetPub\pws\Exec\fix\examples

4) Update the WebFlex.ini by adding in some extra entry:

[vr2]
main_goal=run

5) NMow you can paste into your browser (or create a HTML page with this as an entry):

http://localhost/pws_exec/flx/webflex.exe?webflex=vr2

I Hatpcape

a Bl Edt Yew Go Qoomarks [ook Hidow Hep

= QQO Q O lh'm""mfﬂ"‘fﬁﬁm'l’dﬂ'hr.enewm...; ||’5m| .;-_-E;g 9

o B A JAN E e 0P Pacs [Netseaps Ol Saarch | TTBockmars
[)| % bt et jows. . e s iwebfenz | %)

Flease chovae a grestng

hela L
| E:-Ean
[Subet |
A= Ei’ﬂ'n- ['=:="=:|'t_

Figure 30 - First WebFlex page

35

6) We can extend the KSL file with some question styles.
For instance, we can add the following to the K3L file:

frane greeting style ;
default nethod is radio .

e Metscape

= B= Edt Wew o Bocknads Took Window Help

RO St

_;E,klﬂuﬂmimﬂmﬁmqmw]
)| % et ocalhostipws. . R memtebfez | |

Please chocse a greebng
& helle
Digaodoye

(Expisn |
| Subimit

[Sgaerple ==a |

frane greeting_style ;
default rows is 2 .

e Metscape
= Be Ed Yew Go focknwlke Took Window Help

OO =S

_JE,-EHﬂmlmﬁmEmuQmﬁm]
T e —r— 3¢

Pleaze choose a greetmg

goodbye |§

[Esplen |
[Sutamit |

XS I == |

36

Updating Question Styles

We can use a small Prolog program to update the styles dynamically at runtime.
Let's take the AUTO.VSR chart for example.
Let's save it as KSL.

Now here's some code to define the style frames dynamically.
go : -

i sa_question(Name, A L, P),

L = single(Goup),

cat ([Nane,' _style'], FraneNane,),

new franme(FrameNane, []),

new default(nethod, FraneNanme, radio),

fail

go.

Save this code into a file called, say, update_styles.pl and save it in the SYSTEM folder within the
WebFlex installation.
Now, we must add something into the AUTO.RSL file to load this file and call the 'go' program.

do ensure_| oaded(systenm(update_styles))

relation run if
go and start(Conclusion) and wite(Conclusion)

Now either add a new entry into the WebFlex.ini file or save this back into the VR2.KSL file.

Now when we execute the chart, and all the questions will be presented as radio buttons.

& Netscape '._ E|r$__<|
. File Edit Wew Go Bookmarks Tools Window Help

- Qa @G @ Q |Q} http:fflocalhost i | [@L Search] C:%gﬂ @

- B sl J%AIM 43 Home G Radio [My] Metscape ©, Search CJBookmarks
E_:I S hibp flocalhoskipws., . Flex. exerwebflex=yrz] B

does the engine start?

®yes
Crno

|:E = g E §I|Done |:m:|1ﬂ|ﬂ=h| f |

37

We can use the same utility with the FAB.VSR chart

& Netscape

. File Edit Wew Go Bookmarks Tools Window Help

il

@ﬂ @ﬂ @ @ |"‘-\~} | [@L,Search] C::-gﬁ .:

‘__).-'r Ept‘-_ (== rAail J%AIM 43 Home G Radio [My] Metscape ©l Search EJ

~|1_5| S hibpy flocalhoskipws., . Flex. exerwebflex=yrz]

does the chients contract cover paid leave?

O yes
o

;:i B a ﬁ §I|D-:-ne

e R=E N

3 Netscape

. File Edit Mew Go Bookmarks Tools Window Help

B=1E3

FY

@ﬂ Q @ Q |':3}~ I [ekﬁearch] c::glc -:

A_j E;x'-_ (== il J%P.IM 43 Home G¢ Radio [My] Metscape Sl Search EII

\é %3 htkpeffrebecca/pws_execflxiwebflex EXE]

X

1z the client a wotlcer?

OHO

@ not_known
O yes

::i = Q ﬁ §I|Dnne

E=rsIE

38

& Netscape

. File Edit Wew Go Bookmarks Tools Window Help

n @ﬂ Q @ @ |"‘-\~} I[@L,Searchl C::-gﬁi

‘__).-'r Ept‘-_ (== rAail J%AIM 43 Home G Radio [My] Metscape ©l Search EJ
~|5:| ¢ hitpiffrebeccafpws_execflxfwebflex EXE] a

Iz the chent paid a regular salary”?

Cino
® yes

D2 A &f [oo | e R=E N

And we can extend the utility to deal with other question types.

39

Appendix 1

Creating a New File Type Entry for VisiRule (.VSR) Files

This appendix shows you how to set up Windows so that whenever you double-click on a VisiRule
(\VSR) file, it is opened into a VisiRule window within the WIN-PROLOG development environment.

Windows XP

Double click on the "My Computer" icon. From the window that opens (either the "My Computer"
folder or the "Windows Explorer" window) open the 'Tools' menu and select the "Folder
Options..." entry.

From the "Folder Options" dialog that appears, select the "File Types" tab.

Within the Folder Options dialog,

Click on the "Mew" button to create a new file type entry for VSR files.

When the "Create New Extension" dialog appears, enter "VSR" in the "File Extension:" field and
then click OK.

Within the Folder Options dialog, locate and select the VSR entry in the 'Registered file types:'
list. Click on the Advanced button to display the Edit File Type dialog.

Click on the 'New..." button to display the 'New Action' dialog. Enter into the 'Action:' field
something like 'Open With VisiRule' or whatever you want the textual name of the action to be;
this will eventually become an entry in the menu that appears when you right-click over a .VSR
file.

Click on the 'Browse' button to locate and select the PRO386W.EKXE file. You should now have:
“\program files\win-prolog 4700\pro386w.exe" in the 'Application used to perform action:'
field.

Click in the 'Application used to perform action:' field and navigate to the end of the line and
append the following to the existing text: ensure_loaded(system(visirule)),
system_menu(_,file,open('%1")).

This will load the .VSR file into a VisiRule window within the WIN-PROLOG development
environment. Ensure that you leave a space character between the bit in double quotes and the
Prolog goal. The bit in double quotes (i.e. "c:\program files\win-prolog 4700\pro386w.exe") is
the path to your installation of WIN-PROLOG. The double quotes must be included if spaces are
present in the path or file name. The "%1" in "system_menu(_,file,open(%1'))." will get replaced
by the full pathname of the .VSR file you later double click on.

Click the "OR" button. The action you have just added should appear in the 'Actions' list on the
Edit File Type dialog. Click OK on the Edit File Type dialog. Click Close on the Folder Options
dialog.

40

Windows ME

Double click on the "My Computer" icon. From the options that appear, open ‘Control Panel’ and
select the "Folder Options..." entry.
From the "Folder Options" dialog that appears, select the "File Types" tab.

Within the Folder Options dialog,

Click on the "New" button to create a new file type entry for VSR files. Type ‘.vsr’ in the dialog
that appears and click on OK.

Again within the Folder Options dialog, make sure that the file extensions tab is current and
select the new .vsr entry in the list box.

Click on the Change button and click on Other in the dialog which appears. Under File Name
type in: “c:\program files\win-prolog 4700\pro386w.exe" ensure_loaded(system(visirule)),
system_menu(_,file,open('%1')) which will load the /SR file into a VisiRule window within the
WIN-PROLOG development environment.

Ensure that you leave a space character between the bit in double quotes and the Prolog goal.
The bit in double quotes (i.e. "c:\program files\win-prolog 4500\pro386w.exe") is the path to
your installation of WIN-PROLOG. The double quotes must be included if spaces are present in
the path or file name. The "%1" in "system_menu(_,file,open(%1")." will get replaced by the full
pathname of the .V3SR file you later double click on.

Click on OK and close the folder options dialog.

41

	VisiRule Tutorial
	Contents
	Figure 1 - VisiRule architecture	7
	About This Document
	Intelligent Flowcharts
	What is VisiRule?

	VisiRule lets you generate code in Flex which in turn gives you access to Prolog�Simple Chart
	Extended Chart
	Modularity using Continuation Boxes
	Question Types
	Integer Input and Number Input Questions
	Single Choice and Multiple Choice Questions
	Set and Name Input Questions

	Types of Inference Task in VisiRule
	Decision Trees and Decision Tables
	Advisory Systems
	Classification
	Diagnostics

	Statement Boxes
	What is a Statement Box?
	Simple Calculations Using Statement Boxes
	Using Statement Boxes with Prolog Databases
	Date Handling using Statement Boxes

	Quizzing the User
	Probabilistic Reasoning Using Code Boxes
	Fuzzy Logic using Code Boxes

	WebFlex deployment
	Updating Question Styles
	Appendix 1
	Creating a New File Type Entry for VisiRule (.VSR) Files
	Windows XP

