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—— Abstract

We take a fresh, “clean-room” look at implementing Prolog by deriving its translation to an ex-
ecutable representation and its execution algorithm from a simple Horn Clause meta-interpreter.

The resulting design has some interesting properties. The heap representation of terms and
the abstract machine instruction encodings are the same. No dedicated code area is used as the
code is placed directly on the heap. Unification and indexing operations are orthogonal. Filtering
of matching clauses happens without building new structures on the heap. Variables in function
and predicate symbol positions are handled with no performance penalty. A simple English-
like syntax is used as an intermediate representation for clauses and goals and the same simple
syntax can be used by programmers directly as an alternative to classic Prolog syntax. Solutions
of (multiple) logic engines are exposed as answer streams that can be combined through typical
functional programming patterns, with flexibility to stop, resume, encapsulate and interleave
executions. Performance of a basic interpreter implementing our design is within a factor of 2 of
a highly optimized compiled WAM-based system using the same host language.

To help placing our design on the fairly rich map of Prolog systems, we discuss similarities
to existing Prolog abstract machines, with emphasis on separating necessary commonalities from
arbitrary implementation choices.
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1 Introduction

Forgetting how to implement a Prolog system is as hard as learning how to build one. While
contaminated with episodic memories acquired through the not so few Prolog systems that
we have built in the past [17, 15, 14, 16], a fresh, “clean-room” attempt is described here
to reinvent a Prolog machine by deriving it from the intuitions gleaned from the execution
algorithm of a simplified two-clause meta-interpreter.

But why would one do this, when more than three decades of Prolog implementation seem
to have fully saturated the search space of available implementation choices? Some of the
details will unfold as our story progresses through the next sections, but an important reason
is that we felt that existing systems, while possibly peeking out in terms of performance
[5, 3, 11, 6, 24] or overall environment convenience and system usability [22, 3, 6], have left
interesting implementation choices unexplored. Another reason is that the natural chain
of concepts leading the execution mechanism of SLD-resolution to an efficient low-level
implementation has stayed often in a “no-man’s land” between theoretical work exploring
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the foundations of logic programming languages and implementation work focussed mostly
on refining the gold standard set by the Warren Abstract machine [21, 1, 19].

While comparisons to WAM-based systems abound to help placing in context the alternat-
ives we propose, the paper can also be seen as a self-contained shortcut allowing a “hitchhiker”
to Prolog implementation to get the core of an efficient-enough Prolog system up and running
in a few days. However, given the space constraints of the paper, our step-by-step derivation
process will leave out some routine elements well-known to people modestly familiar with
prolog implementation.

The resulting design, implemented in an easily translatable to C subset of Java, around
1000 lines, is available at http://www.cse.unt.edu/~tarau/research/2016/prologEngine.
zip. We refer to it for details that space constraints will force us to summarize or omit.
More intuitions and background, for the reader less familiar with Prolog implementation,
are available as the recording https://www.youtube.com/watch?v=SRYAMt8iQSw&list=
PLJq3XDLIJkib2h2f0bomdFRZrQeJg4UIW of our VMSS’2016 invited tutorial.

It covers only Horn-Clause Prolog, as this is usually a good first step to evaluate the
basic implementation choices and performance characteristics of a Prolog Machine. It does
not cover orthogonal implementation issues like garbage collection, unification of cyclical
terms, constraints, tabling, built-ins or host language interface, as our focus is on the inner
workings of the Prolog machine seen as an unification+backtracking+indexing engine.

We will start by sketching here some features that are not typically shared with most
existing Prolog systems:

a shared representation of executable code and terms on the heap

a simple English-like intermediate representation used as our “assembler language”

the packaging of solutions as answer streams

the decoupling of indexing and unification instructions

interpreted, but fast-enough execution.

The paper is organized as follows. Section 2 derives (informally) the main lines of our
design from a simple Horn Clause meta-interpreter and an equational representation of
Prolog terms. Section 3 describes an execution-ready heap representation of Prolog clauses
that also serves as instruction set for our abstract machine. Section 4 explains the execution
algorithm seen as iterated unfolding of the first goal in the body of a clause, the generation
of answer streams and the main run-time data structures. Section 5 overviews a generic
indexing mechanism, orthogonal to the unification-based execution algorithm, designed as
an add-on to the iterated unfolding interpreter loop. Section 6 shows some preliminary
performance results. Section 7 overviews related work. Section 8 concludes the paper.

2 Distilling the “essence” of Prolog’s execution algorithm

When seen through the eyes of a meta-interpreter for the Horn Clause subset of Prolog, the
execution algorithm is astonishingly simple. We will next expand step-by-step the intuitions
behind its implicit operations and derive an equational form that we will use to guide
subsequent refinements into a self-contained interpreter.

2.1 Our starting point: a simplified Horn Clause meta-interpreter

We will start by inventing a simpler meta-interpreter than the usual one, with a bit of help
from a convenient clause representation. The meta-interpreter metaint/1 uses a (difference)-
list view of prolog clauses.


http://www.cse.unt.edu/~tarau/research/2016/prologEngine.zip
http://www.cse.unt.edu/~tarau/research/2016/prologEngine.zip
https://www.youtube.com/watch?v=SRYAMt8iQSw&list=PLJq3XDLIJkib2h2fObomdFRZrQeJg4UIW
https://www.youtube.com/watch?v=SRYAMt8iQSw&list=PLJq3XDLIJkib2h2fObomdFRZrQeJg4UIW
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metaint ([]).

metaint ([GIGs]) : -
c1s([GIBs],Gs),
metaint (Bs) .

Clauses are represented as facts of the form cls/2 with the first argument representing the
head of the clause followed by a (possibly empty) list of body goals and terminated with a
variable returned also as the second argument of cls/2.

cls([
add(0,X,X)
|Taill,Tail).
cls([
add(s(X),Y,s(2)), add(X,Y,Z)
|Taill ,Tail).
cls([
goal(R), add(s(s(0)),s(s(0)),R)
|Taill ,Tail).

The actual content of the clauses, that we will use as our running example is marked with %1,
%2 and %3. As one can verify with any Prolog system, it runs as expected when computing
the successor arithmetic equivalent of 2 + 2 = 4.

?- metaint([goal(R)]).
R = s(s(s(s(0)))) .

2.2 The equational form of terms and clauses

This flattened form of Prolog clauses is well-known. We will use the term equation to denote
an unification step, typically between a variable and a compound term or constant. An
equation like

T=add(s(X),Y,s(Z))

can be rewritten as a conjunction of 3 equations as follows

T=add (SX,Y,SZ) ,SX=s(X) ,SZ=s(Z)

When applying this to a clause like

C=[add(s(X),Y,s(Z)), add(X,Y,Z)]

it can be transformed to a conjunction derived from each member of the list

Cc=[H,B] ,H=add (SX,Y,5Z) ,SX=s(X) ,SZ=s(2), B=add(X,Y,Z)

The list of variables ([H,B] in this case) can be seen as a toplevel skeleton abstracting away
the main components of a Horn clause: the variable referencing the head followed by 0 or
more references to the elements of the conjunction forming the body of the clause. One can

see that a Prolog clause can be decomposed into a sequence of such equations, which, if
executed as unification steps, build back the representation of the clause.

2.3 The “English-like equivalent” of the equational form

As the recursive tree structure of a Prolog term has been flattened, it makes sense to express
it as an equivalent “controlled natural language” sentence. Note that we use here “natural
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language” with a grain of salt, as we are talking about a severely restricted form of controlled
English.

add SX Y SZ if SX holds s X and SZ holds s Z and add X Y Z.

Note that we keep the Prolog convention for the uppercase (or “_”) as the fist character of
variable names and the correspondence between the keywords “if” and “and” to Prolog’s
“:=" clause neck and “,” conjunction symbols. Note also the correspondence between the
keyword “holds” and the use of Prolog’s “=" to express a unification operation between a
variable and a flattened Prolog term. The toplevel skeleton of the clause can be kept implicit
as it is easily recoverable.

We can consider this syntax our “assembler language” to be read in directly by the loader
of a runtime system, as well as the virtual machine code generated by a simple compiler
“mi

translating Prolog clauses to it. A tokenizer splitting into words sentences delimited by s

all that is needed to complete a parser for this restricted English-style “assembler language”.

2.4 A small expressiveness lift: allowing variables in function and
predicate symbol positions

Let us observe right away that our flat natural syntax allows the use of variables in function
and predicate symbol position as in

Someone likes beer if Someone likes fries and Someone drinks alcohol.

corresponding to a Prolog syntax involving variables in predicate positions as in

Someone (likes, beer):-Someone(likes, fries),Someone(drinks, alcohol).

This suggests dropping this Prolog restriction for a form of higher order syntax with a first
order semantics giving to our intermediate language a (touch of) the capabilities of HiLog
[4]. While this example can be seen as an indirect way to support the use if likes as an
infix operator the use in

call(Operation,10,20,Result)

as

Operation 10 20 Result

hints about more interesting uses, with Operation working as a variable in predicate symbol
position.

An easy way to make precise the semantics of such programs, is to think about them as
a single freshly named conventional Prolog predicate for each arity, with a first argument
denoting the name of the predicate, a variable standing for it, or standing for a compound
term. This is basically the same semantics as Hilog, [4], known to be translatable to equivalent
first order programs.

As a convenient notational improvement, we can instruct our parser to expand

Xs lists a b c

to

Xs holds list a _0 and _O holds list b _1 and _1 holds list c nil

with the new keywords “list” representing the list constructor and “nil” representing the
empty list.
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3 The heap representation as the executable code

Derived from the equational representation of Prolog terms, our natural language form of the
clauses is ready to leave Prolog for a conventional implementation language that does not
provide, like our two clause meta-interpreter did, unification, recursion and backtracking for
free. It is basically an array representation with variables on the left side of our equations
turned into array indices pointing to compound terms at higher addresses in the same array.

For convenience to both the readers and the writer of this paper, we have picked a subset
of Java, trivially translatable to C that does not make use of object oriented features, while
benefitting from simplicity of automated memory management and safety coming from things
like polymorphic types and index checking.

3.1 The tag system

We will instruct our tokenizer to recognize variables, symbols and (small) integers as primitive
data types. As we develop a Java-based interpreter, we represent our Prolog terms top-down
(as first described in [8]). Java’s primitive int type is used for tagged words!.

We will instruct our parser to extract as much information as possible by marking each
word with a relevant tag (that will also be seen as a WAM-like instruction by the execution
algorithm). We will use the following 3-bit tags:

V=0 marking the first occurrence of a variable in a clause

U=1 marking a second, third etc. occurrence of a variable

R=2 marking a reference to an array slice representing a subterm

C=3 marking the index in the symbol table of a constant (identifier or any other data

object not fitting in a word)

N=4 marking a small integer

A=5 marking the arity of the array slice holding a flattened term (of size 1 + the number

of arguments, to also make room for the “function symbol” - that could be an atom or a

variable)

To ensure fast inlining in a language like Java we make most of our methods final private
static - with similar annotations available in C. For clarity, we omit these annotations
from our code snippets. To emulate the existence of distinct types for tagged words and
their content we flip the sign when tagging and untagging:

int tag(int tag, int word) {return -((word << 3) + tag);}
int detag(int word) {return -word >> 3;}

int tag0f(int word) {return -word & 7;}

The minus sign marking word is meant to trigger an index error at the smallest mis-step
when a method would confuse an address use and a value use of an int. The same technique
would help catching such errors in C. As the cost of this operation is virtually 0, it is not
worth making it a debug-only option.

Note that we will ensure that the Java compiler does as much inline expansion as possible
by coding in a “C-friendly” style, avoiding inheritance and declaring most methods as static,
private and final.

! In a C implementation one might want to choose long long instead of int to take advantage of the
64 bit address space.

10:5
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3.2 The top-down representation of terms

Our top-down representation of Prolog terms closely follows our natural language-style
assembler language syntax. After the clause

add(s(X),Y,s(Z)):-add(X,Y,Z).
compiles to
add _0Y _1 and _O holds s X and _1 holds s Z if add X Y Z .

it is represented on the heap (starting in this case at address 5 and shown here marked with
lower case tags and colons) as follows:

[6]a:4 [6]c:add [7]r:10 [8]v:8 [9]r:13 [10]a:2 [11]c:s [12]v:12
[13]a:2 [14]c:s [15]v:15 [16]a:4 [17]c:add [18Ju:12 [19]Ju:8 [20]u:15

Note the distinct tags of first occurrences (tagged “v:”) and subsequent occurrences of
variables (tagged “u:”). References (tagged “r:”) always point to arrays starting with their
length marked with tag “a:”. As length information in kept in a separate word, cells tagged

as array length contain the arity of the corresponding function symbol incremented by 1.
The skeleton of the clause in the previous example is

r:5 :- [r:16]

as the head of this clause starts at address 5 and its (one-element) body follows at address
16.

3.3 Clauses as descriptors of heap cells

The parser places the cells composing a clause directly to the heap, creating a prototype
clause directly usable for its execution at runtime. At the same time, a descriptor (defined
by the small class Clause) is created and collected to the array called “clauses” by the
parser. An object of type Clause (that one would mimic with a struct in C), contains the
following fields:
int base: the base of the heap where the cells for the clause start
int len: the length of the code of the clause i.e., number of the heap cells the clause
occupies
int neck: the length of the head and thus the offset where the first body element starts
(or the end of the clause if none)
int[] gs: the toplevel skeleton of a clause containing references to the location of its
head and then body elements
int[] xs: the index vector containing dereferenced constants, numbers or array sizes
as extracted from the outermost term of the head of the clause, with 0 values marking
variable positions.
As a side note, this is not a structure-sharing representation, as at runtime the heap
representation of the clauses will be copied via a fast relocation algorithm.

4 Execution as iterated clause unfolding

As the meta-interpreter in section 2 shows it, Prolog’s execution algorithm can be seen as
iterated unfolding of a goal with heads of matching clauses. If unification is successful, we
extend the list of goals with the elements of the body of the clause, to be solved first. Thus,
indexing, meant to speed-up the selection of matching clauses, is orthogonal to the core
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unification and goal reduction algorithm. Given also that we do not assume anymore that
predicate symbols are non-variables, it makes sense to design indexing as a distinct algorithm,
while ensuring that there’s a convenient way to plug it in as a refinement of our iterated
unfolding mechanism.

4.1 Unification, trailing and pre-unification clause filtering

In a way similar to the WAM’s unification instructions, our relatively rich tag system reduces
significantly the need to call the full unification algorithm. If one ignores the WAM’s indexing
instructions and avoids implementing an AND-stack by binarization [18] or by placing
terms directly on the heap, the remaining unification instructions can be seen as closely
corresponding to the tags of the cells on the heap, identified in our case with the “code”
segment of the clauses.

We will look first at some low-level aspects of unification, that tend to be among the
most frequently called operations of a Prolog machine.

4.1.1 Dereferencing

The function deref walks, as usual in a Prolog implementation, through variable references.
We ensure that the compiler can inline it, and inline as well the functions isVAR and getRef
that it calls, with final declarations. We put here their “low-level” code snippets (most
likely well-known to experienced Prolog implementors) as they are in the “innermost loop”
of the system.

int deref(int x) {
while (isVAR(x)) {
int r = getRef(x);
if (r == x) break;
X = r;
}

return x;

}

boolean isVAR(int x) {return tag0f(x) < 2;}

int getRef(int x) {return heap[detag(x)];}

4.1.2 The pre-unification step: detecting matching clauses without
copying to the heap

Independently of indexing, one can filter matching clauses by comparing the outermost array
of the current goal with the outermost array of a clause head.

Interestingly, as a prototype of each clause is already placed on the heap at loading and
linking time, one could tentatively unify it with the goal and then undo the bindings. On
success, one would then redo the unification while progressively copying to the heap the
subterms of the head that need to be newly created.

But even better, we can emulate WAM’s registers as a copy of the outermost array of the
goal element we are working with, holding dereferenced elements in it.

This “register”’-array can be used to reject clauses that mismatch it in positions holding
symbols, numbers or references to array-lengths. We can use for this the prototype of a clause

10:7
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head without starting to place new terms on the heap. At the same time, dereferencing is
avoided when working with material from the heap-represented clauses, as our tags will tell
us that first occurrences of variables do not need it at all, and that other variable-to-variable-
references need it exactly once as a getRef step.

4.1.3 Unification

As we have unfolded to registers the outermost array of the current goal (corresponding to a
predicate’s arguments) we will start by unifying them, when needed, with the corresponding
arguments of a matching clause. A dynamically growing and shrinking int stack is used to
emulate recursion by the otherwise standard unification algorithm. Given that we actually
start by unifying the arguments of the outermost terms we split our algorithm in two methods,
unify_args and unify that take turns pushing tasks on the stack and popping them off as
they explore the structure of the two Prolog terms.

4.1.4 Trailing

As usual, variables at higher addresses are bound to those at lower addresses on the heap
and after binding, variables are trailed when lower than the heap level corresponding to the
current goal.

4.2 Fast linear term relocation

While the WAM’s instructions (that need as well to be decoded by an interpreter loop in
non-native implementations) spend effort on deciding which (new) terms are created on the
heap (“write” mode) and which (old) terms are reused from below (“read” mode), we bet
instead on a very fast relocation loop that speculatively places the clause head (including its
subterms) on the heap. This “single instruction multiple data” operation would likely benefit
from parallel execution simply by the presence of multiple arithmetic units in modern CPUs,
or even more significantly, via a CUDA or OpenCL GPU implementation, especially if copies
are speculatively created in parallel, based on predicted future uses.

As our variable and reference codes that need relocation (V,U,R) are 0,1 and 2, we ensure
that the relocate method is inlined by the Java compiler by defining it “static private
final”. Similar inlining would occur in today’s C compilers.

int relocate(int b, int cell) {
return tag0f(cell) < 3 ? cell + b : cell;
}

Note that we compute the relocation offset ahead of time, once we know the difference
between its source and its target, i.e., when the process for selecting matching clauses starts.
To relocate a slice <from,to> from our prototype clause, placed on the heap ahead of time
by the parser, we use another potentially inlineable method, pushCells:

void pushCells(int b, int from, int to,int base) {
ensureSize(to - from);
for (int i = from; i < to; i++) {
push(relocate(b, heap[base + i]));
}
¥
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As our heap is a dynamic array, we check ahead of time if it would overflow with ensureSize
to avoid testing if expansion is needed for each cell.

New terms are built on the heap by the relocation loop in two stages: first the clause
head (including its subterms) and then, if unification succeeds, also the body. The method
pushHead copies and relocates the head of clause at (precomputed) offset b from the prototype

clause on the heap to the higher area where it is ready for unification with the current goal.

int pushHead(int b, Clause C) {
pushCells(b, 0, C.neck, C.base);
int head = C.gs[0];
return relocate(b, head);

}

As the code reuse coming from distinguishing between a “read” and a “write” mode during
head-unification only increases heap usage by a small percentage (as most clauses are rather
body heavy than head-heavy) we trade it for copying the complete head.

On the other hand, we only copy the body once unification succeeds, by calling the
method pushBody that also relies on the precomputed relocation offset b.

int[] pushBody(int b, int head, Clause C) {
pushCells(b, C.neck, C.len, C.base);
int 1 = C.gs.length;
int[] gs = new int[1];
gs[0] = head;
for (int k = 1; k < 1; k++) {
int cell = C.gs[k];
gs[k] = relocate(b, cell);
}
return gs;

}

Note also that we relocate the skeleton gs starting with the address of the first goal so it
is ready to be merged in the immutable list of goals. At the end, an interesting assertion

holds: the heap is a stream of successive clauses connected among them by variable bindings.

And one can devise a mechanism where, based on profiling, these contiguous heap slices,

corresponding to clauses, are created in advance, speculatively, on separate threads.

While we have not implemented it yet, we mention here an alternative algorithm, that like
the WAM, only creates new terms originating form the head of the clause when needed, while
also ensuring that term creation happens all at once, and only if full unification succeeds.

We start with the pre-unification matching, followed on success with full unification, but
happening on the prototype of the clause located at a lower address on the heap. We take
care to trail every variable binding. Then we scan the trail and handle the following two
situations:

1. if a variable located in the prototype clause area points to a goal already on the heap we
collect it for future unbinding, as we want to clear the prototype from all bindings, for
reuse

2. if the binding comes from the goals already on the heap, above the prototype clauses
area, we copy to the heap the subterm it points to, relocate the variable to point to it,
while making sure to collect the variable for later placement on the trail as now it will
point upwards.

An interesting aspect of this alternative is that one mimics Prolog’s resolution step on the

pre-built prototype and it trades some extra work on the trail, in exchange for less work and

some space efficiency on the heap.

10:9
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4.3 Stretching out the Spine: the immutable goal stack

A Spine can be seen as a runtime abstraction of a Clause instance, collecting the information
needed for the execution of the goals originating from it. Implemented as the small methodless
Spine class, it declares the following fields:
int hd: head of the clause
int base: base of the heap where the clause starts
IntList gs: immutable list of the locations of the goal elements accumulated by
unfolding clauses so far
int ttop: top of the trail as it was when this clause got unified
int k: index of the last clause the top goal of the Spine has tried to match so far
int[] regs: dereferenced goal registers
int[] xs: index elements based on regs
Like the meta-interpreter we have started with, a spine extends the goal stack with the
contribution of a given clause’s body. Note that (most of the) goal elements on this immutable
list are shared among alternative branches. In a way, the illusion that the complete goal stack
is local to each Spine instance is helpful as it matches the way they look in our simplified
meta-interpreter from section 2, but has virtually no space overhead compared to a global
procedurally managed goal stack as most of its (immutable) tail is safely shared among
Spines.

4.4 The interpreter loop: yielding an answer and ready to resume

Our main interpreter loop starts from a Spine and works though a stream of answers,
returned to the caller one at a time, until the spines stack is empty, when it returns null,
signaling that no more answers are available.

Spine yield() {
while (!spines.isEmpty()) {
Spine G = spines.peek();
if (hasClauses(G)) {
if (hasGoals(G)) {
Spine C = unfold(G);
if (C != null) {
if ('hasGoals(C)) return C; // return answer
else spines.push(C);
} else popSpine(); // no matches
} else unwindTrail(G.ttop); // no more goals in G
} else popSpine(); // no clauses left
}
return null;

}

The active component of a Spine is the topmost goal in the immutable goal stack gs contained
in the Spine.

When no goals are left to solve, a computed answer is yield, encapsulated in a Spine that
can be used by the caller to resume execution.

When there are no more matching clauses for a given goal, the topmost Spine is popped
off. An empty Spine stack indicates the end of the execution signaled to the caller by
returning null.

A key element in the interpreter loop is to ensure that after an Engine yields an answer,
it can, if asked to, resume execution and work on computing more answers.



P. Tarau

To achieve this, the class Engine defines in the method ask (). A variable “query” of type
Spine, contains the top of the trail as it was before evaluation of the last goal, up to where
bindings of the variables will have to be undone, before resuming execution. It also unpacks
the actual answer term (by calling the method exportTerm) to a tree representation of a
term, consisting of recursively embedded arrays hosting as leaves, an external representation
of symbols, numbers and variables.

Object ask() {
query = yield();
if (null == query) return null;
int res = answer(query.ttop) .hd;
Object R = exportTerm(res);
unwindTrail (query.ttop) ;
return R;

4.5 Playing with answer streams

We model our answer streams to match Java 8’s stream API [9], although as a more expressive
alternative ( interactors), that made it in our Prolog implementations starting with [13], can
be considered instead.

A reason for choosing the Java 8 stream API is that it allows elegant embedding in
cluster and cloud configurations using high-level functional programming constructs like map,
fold and filter as well as automatic parallelization of complex data-flows as provided by
frameworks like Apache Flink.

To encapsulate our answer streams in a Java 8 stream, a special iterator-like interface
called Spliterator is used [9]. The work is done by the tryAdvance method which yields
answers while they are not equal to null, and terminates the stream otherwise.

public boolean tryAdvance(Consumer<Object> action) {
Object R = ask();
boolean ok = null != R;
if (ok) action.accept(R);
return ok;

Three more methods are required by the interface, mostly to specify when to stop the
stream and that the stream is ordered and sequential.

public Spliterator<Object> trySplit() {
return null; // nothing to do here as we do not want to split our answer stream

}

public int characteristics() { // answers are ordered and possibly infinitely many
return (Spliterator.ORDERED | Spliterator.NONNULL) & ~Spliterator.SIZED;
}

public long estimateSize() { // a way to approximate infinitely many
return Long.MAX_VALUE;

}

public boolean tryAdvance(Consumer<Object> action) {
Object R = ask();
boolean ok = null != R;

10:11
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if (ok) action.accept(R);
return ok;

Once the Spliterator interface is implemented, the stream of answers encapsulating
this engine is created with second argument false, specifying that it is not a parallel stream.

public Stream<Object> stream() {return StreamSupport.stream(this, false);}

5 Multi-argument indexing: a modular add-on

The indexing algorithm is designed as an independent add-on to be plugged into the main
Prolog engine. For each argument position in the head of a clause (up to a maximum that
can be specified by the programmer) it associates to each indexable element (symbol, number
or arity) the set of clauses where the indexable element occurs in that argument position. For
deep indexing, the argument position can be generalized to be the integer sequence defining
the path leading to the indexable element in a compound term. The clauses having variables
in an indexed argument position are also collected in a separate set for each argument
position.

Sets of clause numbers associated to each (tagged) indexable element are supported by
an IntMap implemented as a fast int-to-int hash table (using linear probing). An IntMap
is associated to each indexable element by a HashMap. The HashMaps are placed into an
array indexed by the argument position to which they apply. When looking for the clauses
matching an element of the list of goals to solve, for an indexing element x occurring in
position %, we fetch the set Cy ; of clauses associated to it. If V; denotes the set of clauses
having variables in position 4, then any of them can also unify with our goal element. Thus,
we would need to compute the union of the sets C, ; and V; for each position ¢, and then
intersect them to obtain the set of matching clauses. We will not actually compute the unions,
however. Instead, for each element of the set of clauses corresponding to the “predicate
name” (position 0), we retain only those which are either in Cy; or in V; for each ¢ > 0. We
do the same for each element for the set 1} of clauses having variables in predicate positions
(if any). Finally, we sort the resulting set of clause numbers and hand it over to the main
Prolog engine for unification and possible unfolding in case of success.

Two interesting special cases can benefit from custom variants of the algorithm.

For very small programs or programs having predicates with fewer clauses than the bit size
of a long (64), the IntMap can be collapse to a long made to work as a bit set. Alternatively,
given our fast pre-unification filtering one can bypass indexing altogether, below a threshold.

For very large programs challenging overall memory capacity, a more compact sparse bit
set implementation like [23] or a Bloom filter-based set [2] would replace our IntMap-based set,
except for the first “predicate name” position, needed to enumerate the potential matches. In
this case, the probability of false positives can be fine-tuned as needed, while keeping in mind
that false positives will be anyway quickly eliminated by our pre-unification head-matching
step. Finally, especially for very large programs, one might want to compute the set of
matching clauses lazily, using the Java 8 streams APT [9].

Implementation of indexing for large fact databases is a combination of ordered set
intersection and lazy execution as provided by the Java 8 stream API. The intersection
of the sets of clauses associated (via LinkedHashSets, to preserve order) to each argument
position (or more generally a path to a deeper indexable component) is implemented as a
stream filtering operation. As sizes of matching sets are known in advance, the initial stream
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Table 1 Timings and number of logical inferences (as counted by SWI-Prolog) on 4 small Prolog

programs.
System 11 queens perms of 11 + nrev sudoku 4x4 ‘ metaint perms
our interpreter 5.710s 5.622s 3.500s 16.556s
Lean Prolog 3.991s 5.780s 3.270s 11.559s
Styla 13.164s 14.069s 22.196s 37.800s
SWI-Prolog 1.835s 2.620s 1.336s 4.872s
LIPS 7,278,988 7,128,483 9,261,376 6,651,000

is created from the smallest set of matching clauses, which is then filtered with the others
ordered by size. As stream specifications are mainly promises to perform operations when
needed, clauses are extracted from the intersection one at a time and then passed to the
logic engine for pre-unification and eventual heap construction and full unification. It also
makes sense to speed-up these operations by declaring the streams parallel.

6 Some basic performance tests

We prototyped our design as a small, slightly more than 1000 lines of generously commented
Java program. However, as a more natural target for a system developed around it would
use C, we have stayed away from Java’s object oriented features by using a large Engine
class hosting all the data areas and a few small classes like Clause and Spine that can
be easily mapped to C structs. While implemented as an interpreter, our preliminary
tests (Table 1) indicate, somewhat surprisingly, that performance is close, (within a factor
of 2) to our Java-based systems like Jinni and Lean Prolog that use a (fairly optimized)
WAM-based instruction set and a factor of 2-4 from C-based SWI-Prolog. While this an
order of magnitude slower than today’s C based Prologs the “apples-to-apples” comparison
with our fast WAM-based Prolog implemented in the same language - Java - is a more
accurate indication that this lightweight interpreter design is actually quite fast and likely
to be within a factor of 2 to 3 of today’s optimized WAM-based Prologs if implemented
in C. The program 11 queens computes (without printing them out) all the solutions of
the 11-queens problem. Sudoku 4x4 does the same for a reduced Sudoku solver and perms
of 1l+nrev computes the unique permutation that is equal to the reversed sequence of
numbers computed by the naive reverse predicate. The fourth program, metaint perms is a
variant of the second program, run this time via the two clause meta-interpreter that we
have started from, in section 2, to derive our execution algorithm.

For a more conclusive performance comparison, future work is planned on first deriving a
WAM-like compiled instruction set from our interpreter. Also, we expect that a C-based
system, even if kept as an interpreter, is likely to boost performance slightly above slower
compiled systems like SWI-Prolog, from which our Java-based interpreter is within a factor
of 2-4 on the Horn Clause subset, for small programs.

7 Related work

The closest Prolog implementation is our own Styla system [16], a Scala-based interpreter,
itself a derivative of our Java-based Kernel Prolog [15] system. They both use a clause
unfolding interpreter along the lines of [12], but contrary to our current design, they rely
heavily on high-level features of the implementation language, including an object-oriented
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term hierarchy and a unification algorithm distributed over various term sub-types. First-
class, “resumable” Prolog engines have been present in our systems since [13] and there’s some
renewed interest in them (as reflected by a few dozen recent messages in comp.lang.prolog in
September 2015) as well as in a similar, thread-based model used in SWI-Prolog’s Pengines [7].

Locating function symbols and arity in separate words is different to the typical “sym-
bol4-arity” used in most other Prolog systems we are aware of. The translation from HiLog [4]
to a first order form, using apply/N predicates, is similar to our natural language assembler,
where (unnamed) arrays of various lengths are essentially the same thing as HiLog’s apply/N
predicate wrappers. Consequently, work on a first-order semantics for HiLog [4] also covers
our natural assembler programs.

There are some clear commonalities with the WAM [1] and more closely with the BInWAM
variant of it [17] where transformation to binary clauses implicitly emulates a form of goal
stacking. In a way, we also end up emulating something close to the WAM’s registers that
are saved in our Spine stack, itself playing a role similar to the WAM’s OR-stack. Placing
them on a stack, rather than mapping them to a register vector, is also similar to B-Prolog’s
stack frame-based representation [24].

The major commonality with the BInWAM [17], not present in the WAM, is that the
implicit goal-stacking of the BinWAM is replaced here with an explicit and immutable goal
stack seen as present in each Spine. As most (except the few topmost) goal elements are
shared among Spines, the overall time and space costs are comparable with a mutable goal
stack managed by saving in our Spines pointers to its top. Another commonality with a
BinWAM-optimization (as implemented in BinProlog) is that arguments placed in registers
are dereferenced once and then matched against several clause candidates. On the other
hand, the WAMSs instruction set ensures subterms are only built on the heap as needed, while
our interpreter tries instead to eliminate up front the non-matching clauses by borrowing
pre-unification information from a prototype clause at a lower heap location before unification
is called. On unification success, the complete body of the clause is relocated, and, as this
heap-to-heap copy is quite fast, we do not get a significant performance hit as a result. Thus,
some of the unexplored implementation choices that materialized through our “from scratch”
design steps result in comparable performance, while staying intuitively closer to the view
offered by the two clause meta-interpreter, that we have started with in section 2.

Another feature not present in typical WAM-based Prolog systems, is the decoupling of
indexing and unification instructions, although one might argue that the same philosophy is
motivating the just-in-time indexing schemes of YAP [5] and SWI-Prolog [22] and the user
defined indexing of [20]. In fact, when generalized to arbitrary paths, reaching constants
occurring deep in a term, our indexing algorithm has more in common with the ones used in
theorem proving systems like [10], than with the WAM’s tightly interleaved indexing instruc-
tions [1]. We believe that besides separating naturally independent concerns, decoupling
indexing favors deployment scenarios where the Prolog code is distributed on a cluster or
cloud, and fetched as needed. In this case, indexing might need to happen at a different site
than the one where the call is made.

8 Conclusions

We hope that by trying to forget as much as we could about the long polished art of Prolog
implementation, we have obtained a genuinely more intuitive view of Prolog’s execution
algorithm. By deriving our Prolog machine as naively as possible, from a two line meta-
interpreter, we have captured the necessary step-by-step transformations that one needs to
implement in a procedural language that mimics it.
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In the process, we have lifted some restrictions on Prolog syntax, like the need for the
function or predicate symbol to be a constant, and we have decoupled the indexing algorithm
from the main execution mechanism of our Prolog machine. We have also proposed a
natural language style, human readable intermediate language that can be loaded directly
by the runtime system using a minimalistic tokenizer and parser. The code and the heap
representation became one and the same. And the interpreter based on our design was able
to get close enough (within a factor of two but often less) to optimized compiled code as
shown by our preliminary performance tests. With only slightly more than 1000 lines of
Java code, we believe that future ports of this design can help with the embedding of logic
programming languages as lightweight software or hardware components.

—— References

1 H. Ait-Kaci. Warren’s Abstract Machine: A Tutorial Reconstruction. MIT Press, 1991.

2 Burton H. Bloom. Space/Time Trade-offs in Hash Coding with Allowable Errors. Commu-
nications of the ACM, 13:422-426, 1970.

3 Mats Carlson and Per Mildner. SICStus Prolog — The first 25 years. Theory and Practice
of Logic Programming, 12:35-66, 1 2012. doi:10.1017/S1471068411000482.

4 W. Chen, M. Kifer, and D.S. Warren. HiLog: A first-order semantics for higher-order logic
programming constructs. In E.L. Lusk and R.A. Overbeek, editors, 1st North American
Conf. Logic Programming, pages 1090-1114, Cleveland, OH, 1989. MIT Press.

5 Vitor Santos Costa, Ricardo Rocha, and Luis Damas. The YAP Prolog system. Theory
and Practice of Logic Programming, 12:5-34, 1 2012. doi:10.1017/51471068411000512.

6 M. V. Hermenegildo, F. Bueno, M. Carro, P. Lopez-Garcia, E. Mera, J. F. Morales, and
G. Puebla. An overview of Ciao and its design philosophy. Theory and Practice of Logic
Programming, 12:219-252, 1 2012. doi:10.1017/S1471068411000457.

7  Torbjorn Lager and Jan Wielemaker. Pengines: Web logic programming made easy. TPLP,
14(4-5):539-552, 2014. doi:10.1017/S1471068414000192.

8 Micha Meier. Compilation of compound terms in Prolog. In Saumya Debray and Manuel
Hermenegildo, editors, Proceedings of the 1990 North American Conference on Logic Pro-
grammang, pages 63-79, Cambridge, Massachusetts London, England, 1990. MIT Press.

9  Oracle Corp. Java 8 Streams package. URL: https://docs.oracle.com/javase/8/docs/
api/java/util/stream/package-summary.html.

10  Alexandre Riazanov and Andrei Voronkov. Efficient Instance Retrieval with Standard and
Relational Path Indezing, pages 380-396. Springer Berlin Heidelberg, Berlin, Heidelberg,
2003. doi:10.1007/978-3-540-45085-6_34.

11  Terrance Swift and S. Warren, David. XSB: Extending Prolog with Tabled Logic Pro-
gramming. Theory and Practice of Logic Programming, 12:157-187, 1 2012. doi:10.1017/
S1471068411000500.

12 Paul Tarau. Inference and Computation Mobility with Jinni. In K.R. Apt, V.W. Marek,
and M. Truszczynski, editors, The Logic Programming Paradigm: a 25 Year Perspective,
pages 33-48, Berlin Heidelberg, 1999. Springer. ISBN 3-540-65463-1.

13  Paul Tarau. Fluents: A Refactoring of Prolog for Uniform Reflection and Interoperation
with External Objects. In John Lloyd, editor, Computational Logic—-CL 2000: First Inter-
national Conference, London, UK, July 2000. LNCS 1861, Springer-Verlag.

14  Paul Tarau. Jinni Prolog: a Java-based Prolog compiler and runtime system , May 2012.
https://code.google.com/archive/p/jinniprolog/.

15 Paul Tarau. Kernel Prolog: a Java-based Prolog Interpreter Based on a Pure Ob-
ject Oriented Term Hierarchy, May 2012. https://code.google.com/archive/p/
kernel-prolog/.

10:15

ICLP 2017 TCs


http://dx.doi.org/10.1017/S1471068411000482
http://dx.doi.org/10.1017/S1471068411000512
http://dx.doi.org/10.1017/S1471068411000457
http://dx.doi.org/10.1017/S1471068414000192
https://docs.oracle.com/javase/8/docs/api/java/util/stream/package-summary.html
https://docs.oracle.com/javase/8/docs/api/java/util/stream/package-summary.html
http://dx.doi.org/10.1007/978-3-540-45085-6_34
http://dx.doi.org/10.1017/S1471068411000500
http://dx.doi.org/10.1017/S1471068411000500
https://code.google.com/archive/p/jinniprolog/
https://code.google.com/archive/p/kernel-prolog/
https://code.google.com/archive/p/kernel-prolog/

10:16

A Hitchhiker’s Guide to Reinventing a Prolog Machine

16

17

18

19

20

21

22

23
24

Paul Tarau. Styla: a Lightweight Scala-based Prolog Interpreter Based on a Pure Object
Oriented Term Hierarchy, May 2012. https://code.google.com/archive/p/styla//.
Paul Tarau. The BinProlog Experience: Architecture and Implementation Choices for
Continuation Passing Prolog and First-Class Logic Engines. Theory and Practice of Logic
Programming, 12(1-2):97-126, 2012.

Paul Tarau and Michel Boyer. Elementary Logic Programs. In P. Deransart and
J. Maluszynski, editors, Proceedings of Programming Language Implementation and Logic
Programming, number 456 in Lecture Notes in Computer Science, pages 159-173, Berlin
Heidelberg, August 1990. Springer.

Peter Van Roy. 1983-1993: The Wonder Years of Sequential Prolog Implementation.
Journal of Logic Programming, 19(20):385-441, 1994.

David Vaz, Vitor Santos Costa, and Michel Ferreira. User defined indexing. In Proceedings
of the 25th International Conference on Logic Programming, ICLP ’09, pages 372-386,
Berlin, Heidelberg, 2009. Springer-Verlag. doi:10.1007/978-3-642-02846-5_31.

D. H. D. Warren. An Abstract Prolog Instruction Set. Technical Report 309, Artificial
Intelligence Center, SRI International, 333 Ravenswood Ave, Menlo Park CA 94025, 1983.
Jan Wielemaker, Tom Schrijvers, Markus Triska, and Torbjorn Lager. SWI-Prolog. Theory
and Practice of Logic Programming, 12:67-96, 1 2012. doi:10.1017/51471068411000494.
Brett Wooldridge. Sparse Bit Set, 2016. https://github.com/brettwooldridge/SparseBitSet.
Neng-Fa Zhou. The language features and architecture of B-Prolog. Theory and Practice
of Logic Programming, 12:189-218, 1 2012. doi:10.1017/S1471068411000445.


https://code.google.com/archive/p/styla//
http://dx.doi.org/10.1007/978-3-642-02846-5_31
http://dx.doi.org/10.1017/S1471068411000494
http://dx.doi.org/10.1017/S1471068411000445

	Introduction
	Distilling the ``essence'' of Prolog's execution algorithm
	Our starting point: a simplified Horn Clause meta-interpreter
	The equational form of terms and clauses
	The ``English-like equivalent'' of the equational form
	A small expressiveness lift: allowing variables in function and predicate symbol positions

	The heap representation as the executable code
	The tag system
	The top-down representation of terms
	Clauses as descriptors of heap cells

	Execution as iterated clause unfolding
	Unification, trailing and pre-unification clause filtering
	Dereferencing
	The pre-unification step: detecting matching clauses without copying to the heap
	Unification
	Trailing

	Fast linear term relocation
	Stretching out the Spine: the immutable goal stack
	The interpreter loop: yielding an answer and ready to resume
	Playing with answer streams

	Multi-argument indexing: a modular add-on
	Some basic performance tests
	Related work
	Conclusions

