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Abstract

This paper presents a Prolog-based reasoning module to generate counter-

factual explanations given the predictions computed by a black-box clas-

sifier. The proposed symbolic reasoning module can also resolve what-if

queries using the ground-truth labels instead of the predicted ones. Overall,

our approach comprises four well-defined stages that can be applied to any

structured pattern classification problem. Firstly, we pre-process the given

dataset by imputing missing values and normalizing the numerical features.

Secondly, we transform numerical features into symbolic ones using fuzzy

clustering such that extracted fuzzy clusters are mapped to an ordered set of

predefined symbols. Thirdly, we encode instances as a Prolog rule using the

nominal values, the predefined symbols, the decision classes, and the confi-

dence values. Fourthly, we compute the overall confidence of each Prolog rule
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using fuzzy-rough set theory to handle the uncertainty caused by transform-

ing numerical quantities into symbols. This step comes with an additional

theoretical contribution to a new similarity function to compare the previ-

ously defined Prolog rules involving confidence values. Finally, we implement

a chatbot as a proxy between human beings and the Prolog-based reason-

ing module to resolve natural language queries and generate counterfactual

explanations. During the numerical simulations using synthetic datasets, we

study the performance of our system when using different fuzzy operators

and similarity functions. Towards the end, we illustrate how our reasoning

module works using different use cases.

Keywords: Explainable artificial intelligence, counterfactual explanations,

symbolic reasoning, fuzzy clustering, fuzzy-rough sets.

1. Introduction

Within the AI contributions in recent years, one can observe a growing

number of approaches related to model explainability and interpretability

[13]. In simple terms, model explainability is a property that relies on the

ability to describe how a given algorithm works, or more specifically, how

a given algorithm decides for certain input data. Such explanations can

be generated using the model’s knowledge structures or an agnostic proxy

method. In contrast, model interpretability comprises a spectrum given by

three properties [22, 4]: transparency, decomposability and simulatability,

although the last one could be subject to debate. Unfortunately, state-of-

the-art algorithms devoted to solving complex problems rarely have these

valuable properties by themselves.
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As many domains (e.g., healthcare, education, politics, law) look to de-

ploy deep learning systems, accountability [4], and transparency [35] have

become of paramount relevance. One of the reasons is that if we cannot

deliver explainability properly, we will simply and seriously limit AI appli-

cations’ potential scope. However, aside from the legal and professional con-

siderations that need to be made, there is also an argument that improving

explainability is essential, even in more prosaic business scenarios, as un-

derstanding how an algorithm is actually working can help align better the

activities of data scientists and analysts with the key questions and needs of

their organization.

The literature reports interesting agnostic post-hoc methods to produce

explanations from black boxes, but they involve some limitations. The first

shortcoming is the insufficient focus on the symbolic explanations. In prac-

tice, this results in a relatively inflexible approach to generating descriptions,

where descriptions are almost entirely static (such as in the dictionary ap-

proaches mentioned by Stepin et al. [36]). Moreover, there is a clear benefit

in producing explanations using comprehensible symbols that humans can

easily understand. The second neglected aspect is the automatic quality eval-

uation of the generated explanations. Relating generated descriptions with

a robust mathematical approach is essential to quantify the explanations’

confidence. This aspect is almost entirely neglected in the literature. Lastly,

many existing methods are tailored to work only with a particular machine

learning model. For example, Hatwell et al. [16] delivered a method to be

used with random forests, while Montavon et al. [26] proposed an approach

with a limited application to deep neural networks.
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The issues mentioned above serve as the motivation behind our proposal.

In particular, we see the problem of generating explanations from black boxes

as a reasoning problem rather than a merely descriptive task. We will focus

on producing counterfactual explanations resolving natural language queries

to accomplish our goal. The counterfactual explanation basis can be sum-

marized with the following question: what small changes could be made to

the feature vector to reach the desired outcome?

Therefore, the main contribution of this paper consists of a symbolic rea-

soning module to generate counterfactual explanations from the predictions

computed by a black-box classifier. The module can also resolve what-if

queries using the ground-truth labels instead of the predicted ones. The

proposed approach uses a potentially trainable knowledge base consisting of

Prolog fuzzy rules mined from a set of labeled instances. The workflow of our

proposal is briefly described as follows. After imputing the missing values

and normalizing the numerical features, we build a set of fuzzy prototypes to

describe each numerical feature during the granulation step. Such prototypes

are obtained using a fuzzy clustering algorithm and subsequently associated

with a predefined set of symbols that fulfill an order relation. Afterward,

we create the Prolog knowledge base where problem instances are encoded

as fuzzy symbolic rules such that each symbol is paired with its confidence

value. To quantify the confidence of explanations, we compute the confidence

of each rule using fuzzy-rough sets as defined by the membership value of

each rule to the corresponding positive region. In that regard, we propose

a new parametrized similarity function to compare Prolog fuzzy rules, which

focuses on the certainty of symbolic terms in the rule antecedent. Finally,
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we implement a chatbot as a proxy between human beings and the Prolog-

based reasoning module to resolve natural language queries and generate

counterfactual explanations.

It should be stated that the trainable component mentioned above con-

cerns the parameters attached to the fuzzy granulation process, such as the

fuzzy implicators or the similarity function used to build the fuzzy-rough

sets. However, this paper does not explore such training capabilities beyond

a sensitivity analysis conducted with synthetic datasets.

The remainder of the paper is organized as follows. Section 2 reports

relevant pieces of research concerning the generation of agnostic explanations.

Section 3 elaborates on the knowledge base construction steps, which are

related to extracting the fuzzy prototypes from numerical representations

and creating the Prolog fuzzy rules. Section 4 explains how to compute

the rule confidence using fuzzy-rough sets, while Section 5 briefly goes over

the technical details concerning the chatbot handling the natural language

queries. Section 6 conducts a sensitivity analysis and presents a proof-of-

concept with several use cases. Section 7 provides concluding remarks and

comments on future research endeavors.

2. Related work on agnostic explanations

For a long time, the non-direct interpretation issue of popular machine

learning models (such as random forests, gradient boosting machines, and

neural networks) has been recognized and reported [28]. The existing ap-

proaches that aim to explain the inner workings of black-box data processing

mechanisms differ in several aspects. Firstly, we distinguish models that op-
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erate globally and locally. The former describes a machine learning model

behavior as a whole. An example of such an approach is the accumulated

local effects method [2]. The latter group aims at explaining individual pre-

dictions. This section focuses on methods falling into this category since the

proposed model belongs to this group.

An essential ability of local models is to describe the contribution of each

feature to the decisions. We may distinguish several approaches that focus

on features in the existing state-of-the-art solutions. Examples of such ap-

proaches are LIME (Local Interpretable Model-agnostic Explanations) [34]

and SHAP (SHapley Additive exPlanations) [24]. LIME explains the predic-

tions of any model by building a white-box local surrogate model. This inter-

pretable surrogate model can be used to explain the individual prediction. An

important disadvantage reported in [39] is that the process of building LIME

explanations is nondeterministic, which intuitively goes against the idea that

explanatory models should be transparent [23]. SHAP is a game-theoretic

approach to explain the predictions of a machine learning algorithm. This

method connects optimal credit allocation with local explanations using the

classical Shapley values from game theory. The authors in [20] show that

mathematical problems arise when Shapley values are used for feature im-

portance and that the mitigating solutions necessarily induce further issues.

In addition, they argue that Shapley values are not a natural solution to the

human-centric goals of explainability.

In the subject domain, a much-desired property is model-agnosticism,

which means the method is suitable for explaining the predictions of any

prediction-oriented model. On the opposite side of the spectrum, we have
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model-specific approaches. In the group of model-specific approaches, we

shall mention the high share of approaches paired with neural models, which

pose particular troubles when interpreting their behavior. We may mention,

for example, LRP (Layer-wise Relevance Propagation technique) [3, 26] and

NAMs (Neural Additive Models) [1]. LRP can explain the predictions of

a complex neural network by linking the network’s output with input fea-

tures. The method propagates the prediction backward in the network using

propagation rules to produce the explanation. NAMs is a method dedicated

to deep neural network classifiers and is constructed as a linear combination

of neural networks. NAM describes the relationship between the given input

feature and the produced output.

Generating counterfactual explanations is often solved with the aid of

decision rules to provide an end-user with an explanation of the reasons

that led to the final prediction. Examples of rule-generating approaches are

explanations with high-precision rules called anchors, representing local, suf-

ficient conditions for predictions [33], methods extracting decision trees from

trained neural networks [7], Collection of High Importance Random Path

Snippets (CHIRPS) [16], LORE (LOcal Rule-based Explanations) [15], and

Multi-Objective Counterfactuals (MOC) method [8]. Let us briefly describe

the inner working of the last three methods.

CHIRPS extracts a decision path from each tree in the forest that con-

tributes to the majority classification and then uses frequent pattern mining

to identify the most commonly occurring split conditions. Then, a conjunc-

tive form rule is constructed where the antecedent terms are derived from

the attributes that had the most influence on the classification. This rule
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is returned alongside estimates of the rule’s precision and coverage on the

training data, along with counterfactual details. LORE is model-agnostic

and aims to find a local interpretable predictor on a synthetic neighborhood

generated by a genetic algorithm. Then it derives from the logic of the local

interpretable predictor a meaningful explanation consisting of a decision rule

– which explains the reasons of the decision – and a set of counterfactual

rules, suggesting the changes in the instance’s features leading to a different

outcome. MOC provides counterfactual explanations of how given features

contributed to a decision for a given single problem instance. The advantage

of MOC is that it is model-agnostic and works for numerical and categorical

input features. It relies on solving a multi-objective optimization problem –

it searches for the optimal set of counterfactual explanations in a predefined

search space. An open problem for MOC is how to let a user select the

counterfactuals that meet their particular trade-off between the objectives.

Furthermore, we should mention the method by Wachter et al. [38] which

minimizes a loss function between a model prediction for the given counter-

factual and the desired outcome. Unfortunately, this method is not scalable

and does not handle categorical features.

Yet another strategy of generating counterfactual descriptions for a trained

machine learning model that should be mentioned involves generating an op-

posite prediction and then describing the differences that had to take place to

get the opposite prediction. Examples of this approach include are Model Ag-

nostic suPervised Local Explanations (MAPLE) [31], DIverse Counterfactual

Explanations (DICE) [27], Feasible and Actionable Counterfactual Explana-

tions (FACE) [32]. MAPLE runs in a post-hoc manner and is local (concerns
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a single instance). It combines random forests with feature selection methods

to return counterfactual explanations based on feature importance. DICE is

based on an optimization mechanism with constraints. FACE focuses on re-

turning ”reachable” counterfactual explanations (the simplest paths leading

to explanations are considered, the whole model is a graph).

We should mention that Hoitsma et al. [17] presented an approach for

generating counterfactual explanations, which is conceptually related to the

algorithm presented in this paper. The cited article discusses a method

that produces counterfactual explanations from the predictions computed by

a Fuzzy Cognitive Map-based classifier. This method outputs a set of Prolog

rules where the feature vector was encoded as a symbolic vector denoting

the rule antecedent, while the rule consequent encoded the classifier’s predic-

tions. However, the approach in [17] has several limitations. Firstly, symbolic

descriptions are produced using a relatively inconvenient approach since the

domain expert must fine-tune Gaussian membership functions manually. Sec-

ondly, the proposed module does not have an option to output sentences in

natural language. Finally, it lacks a mechanism to evaluate the consistency

of the generated fuzzy rules. These issues are resolved in the new algorithm

presented in the following sections.

3. Building the Prolog knowledge base

This section elaborates on the steps needed to build the Prolog knowl-

edge base consisting of a set of fuzzy rules. Firstly, we transform numerical

quantities into meaningful symbols using a fuzzy clustering algorithm. Rely-

ing on a symbolic paradigm is challenging for AI systems, as pointed out by
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d’Avila Garcez et al. [9]. Nonetheless, existing studies have demonstrated

that such an approach can enhance the explanation capability of learning

systems [10, 25]. Secondly, we create fuzzy Prolog rules using the derived

symbolic terms and the decision classes determined by the classifier. Besides,

each symbolic term is attached with a confidence value to assess the extent to

which the symbolic representation is accurate. It should be stated that the

literature includes other approaches to Prolog knowledge base construction

and uncertainty management, such as the probabilistic approach discussed

by De Raedt and Kimmig [11]. However, probability theory, fuzzy sets, and

fuzzy-rough sets tackle different types of uncertainties, and replacing one

with another often leads to misleading interpretations. In this paper, we use

fuzzy set theory as a mathematical model for imprecision and rough set the-

ory as a mathematical model for inconsistency. The former is needed when

obtaining the symbolic knowledge representations, while the latter is needed

when quantifying the consistency of each rule.

3.1. Deriving the symbolic terms

Structured pattern classification problems regularly involve both discrete

and continuous features. While the values of discrete features can be included

in a Prolog knowledge base, performing symbolic reasoning with continuous

features might be far from ideal. This section shows the use of fuzzy logic the-

ory to transform numerical features into symbolic knowledge representation

and quantify the uncertainty of such a transformation.

Let F = N ∪D the set of problem features describing a specific pattern

classification problem where N is the set of numerical features while D is the

set of discrete features. As mentioned, the values of fi ∈ D are symbols, and
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their confidence degrees are assumed to be one.

To obtain meaningful symbols from numerical quantities, we build c fuzzy

sets for each feature fi ∈ N. Each fuzzy set is associated with a linguistic

term (e.g., low, medium and high) that provides meaning to the fuzzy set.

Therefore, in our approach, meaning is closely related to the magnitude of

numerical representations in a normalized scale. The number of fuzzy sets c

defines the granularity level of explanations: the more fuzzy sets, the more

detailed the explanations.

In this paper, the fuzzy sets for each numerical feature are determined by

running the fuzzy c-means algorithm [5] on a two-dimensional space where

each data point xi is represented by a symmetric tuple (xi, xi). This means

that the algorithm will discover c fuzzy sets along the identity line. The fuzzy

c-means algorithm creates a membership matrix Uk×c where k is the number

of data points to be processed (i.e., the number of instances in the dataset).

Hence, µij ∈ U represents the degree to which the i-th data point belongs

to the j-th fuzzy cluster. Furthermore, the algorithm returns a matrix of

prototypes Z1×c denoting the cluster centers. The fuzziness of this clustering

algorithm is controlled by a fuzzification coefficient m ∈ [1,∞] where larger

values indicate more fuzziness. Equations (1) and (2) display how to compute

the membership values and the prototypes:

µij =
1

c∑
l=1

(
‖xi−zj‖
‖xi−zl‖

)2/(m−1)
(1)
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zj =

k∑
i=1

µmij · xi
k∑
i=1

µmij

. (2)

After computing the fuzzy sets, we must associate each data point with

a linguist term. Let L = {li}ci=1 denote a partially ordered set consisting of c

linguistic terms such that li precedes li+1 in the ordering (e.g., low precedes

medium). If we order the prototypes in Z in ascending order according to

their norm, we can establish a direct mapping between the symbolic terms in

S and the prototypes in Z. Finally, we can represent the numerical quantity

xi with the fuzzy set reporting the largest membership value. This can be

done with a function µlj(xi) that produces its maximal value when xi reports

the largest membership value to the j-th fuzzy set.

3.2. Deriving the fuzzy Prolog rules

The next step is about building the fuzzy rules to be translated into

a Prolog knowledge base. The fuzzy rules are symbolic because numerical

values will be encoded as symbols using the procedure described in the pre-

vious sub-section. Such rules will include two types of confidence values.

The confidence value associated with each linguistic term denotes how accu-

rate the symbolic value represents the numerical ones. The confidence value

associated with each rule denotes the extent to which that rule does not con-

flict with others. In the next section, we will explain how to compute the

confidence values of rules using fuzzy-rough sets.

Let S be the unordered version of L where sub-indices no longer indicate

that a linguistic term precedes another. The fuzzy rules have the structure:

“IF f1 ∈ N is s1 ∈ S with certainty µs1(x1) AND . . . AND fi ∈ N is si ∈ S
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with certainty µsi(xi) AND . . . AND fn ∈ N is sn ∈ S with certainty µsn(xn)

THEN yj with certainty P (yj|x1, x2, . . . , xn)”. In these rules, xi denotes the

value of the i-th feature while si represents the corresponding symbolic term,

whereas P (yj|x1, x2, . . . , xn) is the confidence to which the classifier labeled

the original instance with the decision class yj ∈ Y given an instance with

feature values x1, x2, . . . , xn. In the case of discrete features, we assume that

si = xi and µsi(xi) = 1 to make the notation consistent.

The next step concerns the creation of a Prolog knowledge base to re-

solve natural language queries. In particular, we are interested in producing

explanations for counterfactual queries with the format: “Which symbolic

values should the features in Q ⊂ F have taken to produce yj ∈ Y instead

of yi ∈ Y, given the symbolic values of features in G ⊂ F, such that Q 6= ∅,

G 6= ∅ and Q ∩ G = ∅?”. The experts are expected to provide the set of

features Q ⊂ F to be investigated, the symbolic values of known features

G ⊂ F and the alternative outcome yj ∈ Y. It should be mentioned that we

can resolve these queries even when Q ∪G 6= F. It is assumed that all nu-

merical features have already been mapped to symbolic ones while retaining

nominal ones defined in the original dataset.

Aiming at translating the fuzzy rules into Prolog ones, we rely on two

predicates named input and output. The input predicate involves the sym-

bolic terms describing a given instance and their confidence values, whereas

the output predicate involves the decision class and the classifier’s confidence.

The Prolog rules have the format: input(id, [[s1,µs1(x1)],. . .,[si,µsi(xi)] , . . .,

[sn,µsn(xn)], µR∗(Θj)(x)]) :- output([yj,P (yj|x1, x2, . . . , xn)]), where µR∗(Θj)(x)

stands for the confidence of the whole rule (to be addressed in the following
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section). Observe that the antecedent and consequent in these Prolog rules

are reversed when compared with the fuzzy rules defined above to match the

inner semantic of counterfactual questions.

During the querying, experts need to provide all pieces of knowledge they

have to resolve the query. This can be done by (i) asserting the dynamic

predicate output with the desired outcome, (ii) instantiating some variables

corresponding to features in G ⊂ F when calling the input predicate, and

(iii) asking for the symbolic values and confidences attached to features in

Q ⊂ F. Moreover, it is advised to retract all asserted predicated before run-

ning any new query to avoid unexpected issues. The Prolog queries have the

following format: retractall(output()), assertz(output([yj,p0])), input

([[v1,p1], . . ., [vi,pi], . . ., [vn,pn], pn+1]), where vi is either the anonymous

variable or a symbolic term used to instantiate the i-th symbolic variable,

while pi is either the anonymous variable or a confidence value. In addition,

we can add constraints to symbolic terms or confidence values associated to

variables to be resolved. The same applies to the confidence values of rules.

For example, we can ask for symbolic solutions excluding certain linguistic

terms, that have a confidence value greater than 0.6 and that appear in rules

having a confidence degree greater than 0.8. Section 6 will introduce a case

study illustrating the querying features.

It is worth mentioning that, although the knowledge base is composed of

fuzzy Prolog rules, the symbolic reasoning is crisp. Therefore, after resolving

a query, confidence values will be used to assess the extent to which the user

can trust the explanations generated by the module.
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4. Uncertainty quantification of fuzzy rules

In the procedure described in the previous section, each symbolic term

resulting from the fuzzy granulation process was attached with a confidence

value. However, such a confidence value would not provide information on

the extent to which a rule conflicts with others. In this section, we develop

a rule confidence measure based on the fuzzy-rough set formalism [12, 18]

that takes into account the certainty of symbolic values involved in both the

antecedent and the consequent of fuzzy Prolog rules.

Let Ω be the set of fuzzy rules, Θ ∈ Ω a fuzzy set with membership

function µΘ(x) and R ∈ Ψ(Ω×Ω) a fuzzy binary relation with membership

function µR(y, x). The membership function µΘ : Ω→ [0, 1] determines the

degree to which x ∈ Ω is a member of Θ, while µR : Ω × Ω → [0, 1] is the

degree to which y is a member of Θ taking into account the extent to which

x is a member of Θ. If no confusion arises, we will represent R(x) with its

membership function µR(x)(y) = µR(y, x) to lighten the notation. Finally, let

Θj ∈ Ω denote the set of fuzzy rules associated with the j-th decision class

as determined by the black-box classifier.

The first step to derive the rule certainty measure is to build a fuzzy set

for every rule set Θj resulting from partitioning Ω. Equation (3) shows the

corresponding membership function,

µΘj
(x) =

P (yj|x), x ∈ Θj

0, x /∈ Θj

(3)

where P (yj|x) denotes the confidence of decision class yj being correct given

the instance encoded with the fuzzy rule x ∈ Ω. In a nutshell, P (yj|x) is

15



the confidence attached to that decision class. If these probabilities are not

available, then we can make P (yj|x) = 1 when x ∈ Θj.

The second step concerns the fuzzy binary relation R ∈ Ψ(Ω ×Ω) with

membership function µR(y, x) such that x, y ∈ Ω. The latter function can

be computed by combining the piece of knowledge µΘj
(x) with the similarity

value between fuzzy rules x and y. Equation (4) formalizes how to compute

the µR(y, x) function following this reasoning,

µR(y, x) = µΘj
(x)e−λd(x,y) (4)

such that λ > 0 is a smoothing parameter and

d(x, y) =

|F|∑
i=1

σi(x, y) (5)

where σi(x, y) is a feature-wise distance function that quantifies the dissimi-

larity between two linguistic terms. Equation (6) shows a simple feature-wise

distance function used to compare nominal features, as turns out to be the

case of symbolic terms describing a numerical quantity,

σi(x, y) =

 0, s(yi) = s(xi)

1, s(yi) 6= s(xi).
(6)

The primary limitation of the feature-wise distance function depicted in

Equation (6) is that it does not take into account the membership values

associated with the linguistic terms. However, it might be the case that two

numeric values are described by the same linguistic terms having attached

quite different membership values. Equation (7) presents a fuzzy feature-wise

distance function that tackles such a limitation,
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σi(x, y) =

 ∆i(x, y), s(yi) = s(xi)

1, s(yi) 6= s(xi)
(7)

such that ∆i(x, y) = 0.5 · (1−min{µs(xi)(xi), µs(yi)(yi)}). It should be high-

lighted that Equation (7) uses both the symbolic terms and their member-

ship degrees when computing the distance between the fuzzy rules being

compared. More explicitly, the dissimilarity is computed using the minimal

membership degree attached to the symbolic terms in the antecedent of the

rules. This value is subtracted since the dissimilarity between two symbolic

values should increase as the minimal membership value decreases. More-

over, we enforce a constraint to ensure that the maximal value reported by

our feature-wise distance function when the symbolic terms match is not

greater than 0.5. Overall, we can assert that d(x, y) will report differences

even when all linguistic terms in the antecedent of rules x and y match, but

their membership values are not maximal.

Finally, we can compute the confidence of rule x ∈ Ω as the membership

degree of x to the fuzzy-rough positive region [18] associated with the rule’s

decision class. Fuzzy-rough positive regions are equivalent to the fuzzy-rough

lower approximations, which can be understood as the fuzzy set of rules

that do not conflict with each other (i.e., rules having a reasonably similar

antecedent have different consequents). To obtain the fuzzy-rough lower

approximations, we can use the degree of x being a member of Θj as defined

by the fuzzy binary relation. This can be measured by the truth value of the

statement “y ∈ R(x) implies y ∈ Θj” under fuzzy sets R(x) and Θj. The

authors in [18] suggested using a necessity measure infy∈Ω I(µR(y, x), µΘj
(y))

for such a quantification, where I : [0, 1]×[0, 1]→ [0, 1] is a fuzzy implication
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function. During numerical simulations, we will conduct a sensitivity analysis

involving several fuzzy implicators.

Equation (8) shows the membership function for the lower approximation

set R∗(Θj) associated with the j-th decision class,

µR∗(Θj)(x) = min

{
µΘj

(x), inf
y∈Ω
I(µR(y, x), µΘj

(y))

}
. (8)

It can be observed that this fuzzy derivation of the rough lower approx-

imations does not assume that µR(x, x) = 1,∀x ∈ Ω. Instead, we compute

the minimum between µΘj
(x) and infy∈Ω I(µR(y, x), µΘj

(y)) to preserve the

inclusiveness of R∗(Θj) in the fuzzy set Θj. Similarly, we could compute the

fuzzy-rough lower approximations and the positive and boundary regions;

however, they are irrelevant to our study.

5. Natural language Prolog queries

In this section, we go over the technical details concerning the chatbot

handling the natural language queries posed by users. Moreover, we formalize

the structure of these questions and gather them into categories ranging from

exploratory data analysis to symbolic explanations.

5.1. Motivation

A Prolog knowledge base can be queried directly using Prolog but it

might require some expertise from the user concerning declarative program-

ming. Thus, we implemented a conversational agent (chatbot) intending to

enable users without knowledge of the Prolog language and syntax to inter-

act with the knowledge base by running natural language queries. By doing
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that, we used the Rasa platform [6], which provides an open-source tool that

can be used to build conversational virtual assistants. It allows for tight in-

tegration with the Python programming language, which is especially useful

in our case, as the chatbot needs to interact with Prolog. The Python-Prolog

interaction is enabled through the pyswip module [37].

Besides running queries on the Prolog knowledge base to answer what-if

and counterfactual questions, the conversational agent enables users to ex-

plore data, train and validate a classifier, and construct a knowledge base us-

ing natural language. Furthermore, the chatbot can answer questions about

these steps and create visualizations.

5.2. Implementation

The chatbot in Rasa consists of the following components: Natural Lan-

guage Understanding (NLU) with intents and entities, rules, actions, and

back-end Python script. The NLU component involves example phrases for

each intent with annotated entities (if any). An intent represents what the

user wants to achieve with the sent message, while an entity is a crucial piece

of information within the sent message that needs to be considered in the

chatbot’s action. An entity can be used as a parameter for the action that

follows. The example phrases are the training data for the NLU, which allows

it to classify intents and extract entities from new user messages.

The actions are the predetermined responses the chatbot can return given

a specific intent. This can be a simple piece of text or an image and can be

extended through custom actions. These are actions run using the functions

in the back-end Python script, used to load the data, perform exploratory

data analysis and visualization, train the classifier, create the knowledge
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base and run queries. The rules component specifies what action should be

performed according to the classified intent.

5.3. Question categories

This section will formalize the different queries supported by the conver-

sational agent using the proposed reasoning module as the back-end. The

formalization will adopt the same notation as in the previous sections for

mathematical rigor, although the query to be resolved should not be expected

to contain any mathematical symbol. It shall be noted that the chatbot can

handle different formulations for these queries.

5.3.1. Loading the classification dataset

The user can request the chatbot to load a certain dataset. The chatbot

extracts the provided name of the dataset as an entity and searches for it in

a folder with available datasets. The expected files should use the Attribute-

Relation File Format (ARFF), an ASCII text file that describes a list of

instances sharing a set of problem features.

5.3.2. Conducting exploratory data analysis

After loading the dataset, the user can explore the data by asking for

visualizations and further information about the data. These can be roughly

subdivided into the following categories.

Questions such as “Let me see what the dataset contains” return the

number of instances and the features in the dataset. Also, the correlation

between two features can be plotted by asking “Show how fi ∈ N and fj ∈ N

are correlated”. Moreover, the correlation matrix can be asked for, e.g., with

“What does the correlation for the entire dataset look like?”. The distribution
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of a given feature can be plotted in a histogram by asking a question such as

“How are the values for fi ∈ N distributed?”.

5.3.3. Training the classification model

When asked, the chatbot trains a random forest classifier after splitting

the data into a training and test set. The chatbot returns the accuracy on

the test set, together with a confusion matrix. The user can provide the

parameters (n estimators, max depth) for training the classifier, or default

values are used. An example input from the user could be: “Train the model

with a maximum depth of 7 and use 200 estimators.” After the training is

complete, the user can ask how the data was split: “How did you split the

data for training and testing?”

5.3.4. Building the explanation module

Once the classifier has been trained, the user can ask to construct the

symbolic explanation module. This can be done by typing: “Create the

explanation module for this classifier”. In that way, the symbolic terms for

the numerical features and the fuzzy-rough sets, and the knowledge base in

Prolog are constructed. The user can also ask for a plot of the membership

of each instance to the fuzzy-rough regions: “Plot the memberships of all the

instances to the fuzzy-rough regions.”

The user can request top rules in the Prolog knowledge base, for example,

by asking: “What are top rules in the knowledge base?”. The top rules are

those with the highest membership values to the positive fuzzy-rough region

they belong to. Similarly, the difficulty level of the loaded classification prob-

lem can be requested by asking: “Tell me the complexity of the classification
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problem please”. The complexity of the loaded problem is calculated as one

minus the average membership values of the instances to the positive fuzzy-

rough region they belong to. Moreover, the user can ask for the explicit bias

attached to a given protected feature, for example: “Can you quantify the

bias attached to fi ∈ F?” The bias is calculated as proposed by Nápoles and

Koumeri [29] using fuzzy-rough sets.

5.3.5. Answering what-if questions

The chatbot allows users to run queries on the Prolog knowledge base

without being familiar with the declarative programming paradigm. These

queries can be divided into what-if questions and counterfactual questions.

With what-if questions, the user provides symbolic values for selected input

features and the decision class and asks for the symbolic values of unknown

input features. The structure of these queries and the expected answers can

be formalized, as illustrated below.

User: If g1 ∈ G is s1 ∈ S, . . ., ga ∈ G is sa ∈ S and the outcome is

yj ∈ Y, then what is q1 ∈ Q, . . ., qb ∈ Q?

Bot: I have run the query for you. These are the results: q1 ∈ Q is

s1 ∈ S with a certainty of µs1(x1), . . ., qb ∈ Q is sb ∈ S with a certainty

of µsb(xb). The entire rule has a certainty of µR∗(Θj)(x).

5.3.6. Answering counterfactual questions

Counterfactual queries are similar to what-if queries, but they involve

an alternative decision. To do that, the user provides an instantiation for

known features and requests symbolic values for certain features to obtain the

desired outcome. Counterfactual queries posed by the user and the answers
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provided by the bot can be formalized as follows.

User: What values should q1 ∈ Q, . . ., qb ∈ Q have taken, assuming that

g1 ∈ G is s1 ∈ S, . . ., ga ∈ G is sa ∈ S, for the outcome to be yj instead

of yi?

Bot: I have run the query for you. These are the results: q1 ∈ Q should

be s1 ∈ S with a certainty of µs1(x1), . . ., qb ∈ Q should be sb ∈ S with

a certainty of µsb(xb). The entire rule has a certainty of µR∗(Θj)(x).

While the literature reports other conversational agents to generate expla-

nations, they cannot resolve queries leading to counterfactual explanations.

For example, the agent in [14] uses decision trees and subgroup discovery

algorithms to answer what-if questions in a decision-making context. In con-

trast, the agent in [21] is primarily devoted to answering what-if questions

and computing feature relevance scores.

5.3.7. Exploring the recovered rules

After running a query, the user can request additional information about

the rule(s) used to answer the query. The membership of the returned rule

to the fuzzy-rough regions can be plotted by asking: “Show the membership

of this rule to the fuzzy rough regions”. Similarly, the user can request the

closest instances to a given rule as follows: “What rule is the closest to this

one?” The closest instance to a given instance is determined by using the

proposed distance function, as described in Section 4. Moreover, the difficulty

of an instance can be asked as follows: “Tell me how difficult this rule is”.

The difficulty level of an instance is assumed to be inversely correlated to its

membership degree to its corresponding fuzzy-rough region: the larger this
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membership value, the easier the instance.

6. Numerical simulations

In this section, we will assess the proposed Prolog-based reasoning module

for symbolic reasoning. Firstly, we will conduct a sensitivity analysis to study

the impact of the granulation parameters on the confidence of the induced

fuzzy rules. Secondly, we will present a proof-of-concept illustrating the main

use cases of the resulting conversational agent.

6.1. Sensitivity analysis

Aiming at conducting the sensitivity analysis, we will rely on ten struc-

tured pattern classification datasets having different properties (see Table 1).

The number of instances in these datasets range from 57 to 900, the number

of features from 6 to 28, and the number of decision classes from 2 to 11.

Moreover, we have two highly imbalanced datasets as defined by the ratio

between the minority class and the majority class.

The sensitivity analysis attempts to determine the impact of the choice

of a fuzzy implicator on the granulation step (i.e., the process of extracting

concepts from numerical data). A fuzzy implicator is a mapping that is used

in our model to determine rule confidence (see Equation (8)). Overall, fine-

tuning this parameter is necessary to determine optimal model parameters

when it comes to the confidence of explanations. There are certain formal

assumptions that a fuzzy implicator must satisfy: for any x, x1, x2, y1, y2 ∈

[0, 1]: if x1 ≤ x2, then I(x1, y) ≥ I(x2, y) and if y1 ≤ y2, then I(x, y1) ≤

I(x, y2). In addition, the following boundary conditions must be satisfied:

I(0, 0) = 1, I(1, 0) = 0, and I(1, 1) = 1. The literature concerning fuzzy
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Table 1: Properties of each dataset used in the numerical simulations.

Index Dataset Instances Numeric Categorical Classes Imbalance

1 australian 690 8 6 2 no

2 crx 653 6 9 2 no

3 ecoli 336 7 0 8 71:1

4 flags 194 28 0 8 15:1

5 labor 57 8 8 2 no

6 diabetes 768 8 0 2 no

7 vehicle 846 18 0 4 no

8 vertebral3 310 6 0 3 no

9 vowel 990 10 3 11 no

10 wine 178 13 0 3 no

operators discusses several popular fuzzy implicators [19, 30]. In this paper,

we will study the fuzzy implicators listed below.

• Fodor implicator, given by the following equation:

IFD(x, y) =

1, if x ≤ y

max(1− x, y), otherwise

(9)

• Goguen implicator, given by the following equation:

IGG(x, y) =

1, if x ≤ y

y
x
, otherwise

(10)
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• Gödel implicator, given by the following equation:

IGD(x, y) =

1, if x ≤ y

y, otherwise

(11)

•  Lukasiewicz implicator, given by the following equation:

IGD(x, y) = ILK(x, y) = min(1, 1− x+ y) (12)

Figure 1 shows three-dimensional plots of listed fuzzy implicators. We

selected them as candidate mappings because of their different behavior for

various input values. While  Lukasiewicz and Fodor are symmetric and exhibit

abrupt changes in their shapes, Gödel and Goguen are neither symmetric nor

change as abruptly as the former operators.

Figure 2 shows the average rule confidence for each dataset when varying

the number of symbolic terms for different fuzzy implicators in Equation (8)

and feature-wise distance functions in Equation (5). It can be noticed that

Gödel and Goguen produce shallow confidence values while  Lukasiewicz and

Fodor report the same, highest confidence values. The results also suggest

that using more symbolic terms does not necessarily lead to higher confidence

values. Instead, more symbols will harm the interpretability due to the high

granularity of the symbolic explanations. Finally, we can conclude that the

proposed feature-wise distance function leads to higher confidence values

than the baseline function when using less symbolic terms.

Figure 3 shows the average rule confidence for each dataset when varying

the smoothing parameter λ > 0 in Equation (4) for different fuzzy impli-

cators in Equation (8) and feature-wise distance functions in Equation (5).
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Figure 1: Plots of selected fuzzy implicators for arguments (x, y).

Similar to the previous simulation results,  Lukasiewicz and Fodor are the

best-performing fuzzy operators. Moreover, it can be concluded that the

larger smoothing parameter values lead to larger confidence values since the

symbolic rules become easier to separate.

We configure the parameters associated with the information granula-

tion and uncertainty quantification of rules from the sensitivity analysis.

 Lukasiewicz or Fodor is the recommended fuzzy implication operator, and

the feature-wise distance function is the one proposed in Equation (7) while

the smoothing parameter in Equation (4) is set to one.
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Figure 2: Average rule confidence for each dataset when varying the number of symbolic

terms used to describe the numerical features for different fuzzy implication functions in

Equation (8) and feature-wise distance functions in Equation (5).

6.2. Detailed case study

Next, we will illustrate the different questions supported by the proposed

conversational agent using the diabetes dataset. The structure of these ques-

tions and their categories are introduced in Section 5.
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Figure 3: Average rule confidence for each dataset when varying the smoothing parameter

λ > 0 in Equation (4) for different fuzzy implication functions in Equation (8) and feature-

wise distance functions in Equation (5).

First of all, the user should ask the chatbot to load the desired dataset,

for example, by typing “Load the diabetes dataset”. The recognized in-

tent is “load data”. The dataset to be loaded is extracted by Rasa as the

entity “dataset”. Once the dataset is loaded, the user can request further
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information, such as the features describing the problem and the number of

instances. Figure 4 shows an example of this step where “data stats” is the

intent recognized by the conversational agent.

Tell me more about the data.

The dataset contains the following variables: Plas, Pres,

Skin, Insu, Mass, Pedi and Age. The dataset has 768 in-

stances in total.

Figure 4: Basic statistics after having loaded a dataset.

Furthermore, the user can ask questions about problem features, e.g.,

how a continuous variable is distributed or how two continuous variables

are related (using a scatter plot). In the former, the recognized intent is

“plot histogram”, and the extracted entity is “variable”. In the latter, the

intent is “plot correlation”, and Rasa extracts twice the entity “variable”.

Examples can be seen in Figure 5 and Figure 6.

A correlation matrix may also be generated, as can be seen in Figure 7,

provided that the dataset contains numeric features. This is performed when

the intent “correlation matrix” is recognized.

A random forest classifier can be trained on the dataset, as the intent

“train model” is recognized. The number of estimators and the maximum

depth for the random forest can be specified. The chatbot also returns the

training accuracy (see Figure 8). It is worth mentioning that including other

classifiers is possible and would require little effort.
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How is BMI distributed?
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Mass
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There you go!

Figure 5: An example of a histogram generated by the chatbot.

The user can request more information about the data split used during

the training process, as illustrated in Figure 11. The default configuration is

80% for training and 20% for testing purposes. Upon recognizing the intent

“train test samples”, the chatbot returns the train-test split configuration as

a percentage and number of instances.

The user can ask the chatbot to construct the symbolic explanation mod-

ule. As this request is recognized by the intent “train explanation module”,
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How are Age and Pres correlated?
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Age
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es

The correlation value between the submitted variables is

0.24. The associated p-value is 1.7520607075290974e-11.

The correlation does not seem to be very strong.

Figure 6: An example a pairwise correlation analysis performed by the chatbot.

the chatbot performs several steps that range from building the symbolic

terms to quantifying the uncertainty of symbolic rules. Figure 10 shows the

fuzzy prototypes extracted from numerical features describing the diabetes

dataset. The axes denote the normalized values of these features; thus, pro-

totypes will be located along the identity line. In this example, we extract
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Show me the correlation matrix.
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This is what the correlation matrix looks like.

Figure 7: An example of a correlation matrix generated by the chatbot.

c = 5 fuzzy prototypes for each numerical feature using the fuzzy c-means

algorithm. Next, these prototypes are ordered and labeled with a predefined

set of symbolic terms (very low - VL, low - L, medium - M, high - H, and

very high - VH) that will be used to create the symbolic fuzzy rules. Finally,

the fuzzy-rough regions are created, and the Prolog knowledge base is built.

Figure 12 an excerpt from this knowledge base.

Once the symbolic explanation module is built, the user can pose what-if
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Train the model on this data.
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I successfully trained the random forest classifier on the

dataset! The accuracy on the test set is 0.766. I included

the confusion matrix for the predictions on the test set. If

you want to achieve higher accuracy, feel free to train the

model again with other parameters for the number of esti-

mators and/or maximum depth. If you are satisfied with the

achieved accuracy, we can continue!

Figure 8: Training of a Random Forest classifier by the chatbot.

or counterfactual questions (the latter being discussed later). What-if ques-

tions are recognized by the intent “run full query”. Rasa extracts the entities

“known concept” for variables specified as known, “value” for their respec-
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How did you split the data?

I used 80% of the data to train the model, in this case that

are 614 instances. For testing, I used the remaining 20% of

the data, so 154 instances in total.

Figure 9: An example of requesting the data split in the chatbot.

tive values, “outcome” for the desired outcome, and “unknown concept” for

the variable to be resolved by the chatbot. Figure 13 shows an example of

the answer provided by the conversational agent for a what-if question.

As the conversational agent returns a rule, the user can inquire about the

membership of that rule to the fuzzy-rough regions and the difficulty of the

rule. The negative region contains the rules not related to the decision class,

and the positive region includes the rules associated with the class, while the

boundary region contains the inconsistent rules. The recognized intents are

“plot instance FRS” and “instance difficulty”, respectively.

Furthermore, the user can request the closest rule to the one used to

resolve the last query. This is recognized by the intent “closest instance”,

and an example can be seen in Figure 15.

As mentioned, the user can also ask the chatbot counterfactual questions,

an example of which can be seen in Figure 16. Rasa recognizes such a ques-

tion by the intent “run cf query”. It extracts the variables that should be

regarded as unknown as the entity “unknown concept”, the variables that
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Figure 10: Fuzzy prototypes extracted from numerical features describing the diabetes

dataset, which are labeled with predefined linguistic terms.
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Can you construct the symbolic explanation module?

Done! I calculated the symbolic terms for the values of the

input variables. I created fuzzy-rough regions and built a

knowledge base in Prolog to run queries. I would appre-

ciate it if you used the correct feature and class names.

As a reminder, the feature names are las, Pres, Skin, Insu,

Mass, Pedi, Age, and Class. The outcome classes are

tested negative and tested positive.

Figure 11: Construction of the symbolic explanation module in the chatbot.

input ([503 ,[vl ,0.98] ,[l,0.962] ,[m,0.988] ,[l,0.956] ,[vl

,0.962] ,[vl ,0.987] ,[l,0.965] ,[vl ,0.975] ,0.954]) :- output

([ tested_negative ,1.0]).

input ([504 ,[vh ,0.945] ,[vh ,0.973] ,[m,0.955] ,[h,0.945] ,[vl

,0.999] ,[m,0.956] ,[vl ,0.998] ,[m ,0.972] ,0.877]) :- output ([

tested_positive ,0.85]).

Figure 12: An excerpt from the Prolog knowledge base.

are known as the entity “known concept”, their values as the entity “value”,

and finally, the outcome as the entity “outcome”.

Additionally, the problem complexity can be quantified by the chatbot

(see Figure 17). This is recognized as the intent “complexity” and involves

the fuzzy-rough regions used to determine the complexity of rules. The intu-
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If Preg is very low, Gluc is low, and the outcome is

test negative, what is Age?

I have run the query for you. These are the results: Age is

very low with a certainty of 0.991. The entire rule has a cer-

tainty of 0.954.

Figure 13: Example of a what-if question resolved by the chatbot.

What difficulty does this rule have?

This instance has a difficulty of 0.046.

Figure 14: Difficulty of the rule used to answer the previous what-if question. The higher

the difficulty level, the less confident the answer.

ition is that more difficult problems should have more significant boundary

regions, while easier ones should have larger positive regions.

The fuzzy-rough uncertainty [29] associated with a protected feature can

also be requested by the user. This measure quantifies the fuzzy-rough re-

gions change when the protected feature is removed, which can be seen as

a proxy for measuring explicit bias. An example can be seen in Figure 18.

Rasa recognizes this as the intent “bias”, and extracts the entity “variable”,

which indicates which feature is to be suppressed.
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What rule is closest to this one?

I found that the following rule is the closest: If Preg is very

low, Gluc is low, Pres is medium, Skin is low, Insu is very

low, Mass is low, Pedi is very low, Age is very low, then

Class is tested negative.

Figure 15: Closest rule to the last one used to resolve a query.

What values should Preg and Gluc take while Age is

medium for an outcome to be tested negative instead of

tested positive?

I have run the query for you. These are the results: Preg

is very high with a certainty of 0.929. Gluc is high with a

certainty of 0.924. The entire rule has a certainty of 0.883.

Figure 16: Example of a counterfactual question resolved by the chatbot.

Additionally, the user can request the top rules in the knowledge base, as

can be seen in Figure 19. The chatbot recognizes this task through the intent

“top rules kb”. These rules provide valuable knowledge about the problem

that domain experts can further inspect.

Before concluding our paper, we should mention that the proposed conver-
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What is the complexity of the loaded problem?

The complexity of the classification problem on this dataset

is 0.862. This complexity measure is calculated by taking the

sum of the membership values according to positive regions,

divided by the total number of instances.

Figure 17: Complexity of the loaded classification problem.

What is the explicit bias associated with Age?

The fuzzy-rough uncertainty (bias) of this feature is 0.662.

This measure quantifies the changes in the decision bound-

aries after removing a protected feature as a proxy for bias

quantification.

Figure 18: Explicit bias attached to a protected feature.

sational agent can be extended significantly in different ways. For example,

we can integrate popular fairness measures to quantify and mitigate bias,

include pre-processing pipelines, or incorporate feature attribution metrics

as another way of providing interpretability.
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What are the top rules in the knowledge base?

These are the top 3 rules in the knowledge base:

Rule #1: If Preg is medium, Plas is low, Pres is low, Skin is

high, Insu is medium, Mass is low, Pedi is high, Age is low,

then Class is tested negative.

Rule #2: If Preg is high, Plas is very high, Pres is very

high, Skin is medium, Insu is high, Mass is very high, Pedi

is medium, Age is high, then Class is tested positive.

Rule #3: If Preg is high, Plas is very high, Pres is low, Skin

is high, Insu is high, Mass is medium, Pedi is medium, Age is

low, then Class is tested positive.

Figure 19: Top rules in the knowledge base.

7. Concluding remarks

In this paper, we presented a reasoning module powered by Prolog to

generate symbolic explanations from the predictions made by a black-box

classifier. The main procedure of this module concerns the induction of fuzzy

rules used to derive the explanations. The main advantages of our proposal

are summarized as follows. Firstly, the rules are automatically mined using

a data-driven approach that relies on granular computing. Secondly, the

explanation module is agnostic and can be coupled with any machine learning

classifier. Thirdly, the module computes the confidence of rules as a tool to
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assess the correctness of explanations. Lastly, users can pose their questions

using natural language queries and receive understandable answers without

involving complex theoretical concepts.

The numerical simulations using several pattern classification problems

allowed us to draw interesting conclusions about the parameters involved in

the fuzzy rule construction. Concerning the number of symbols, we noticed

that having more granularity does not always lead to higher confidence values,

but it does harm interpretability. It was also noticed that the proposed

feature-wise distance function yields better results than the baseline when

having less granularity, while the smoothing parameter should be as close

to one as possible. Concerning the fuzzy operators,  Lukasiewicz and Fodor

were the best-performing operators in our simulations.

Within the limitations of our proposal, we can mention the trade-off be-

tween precision and significance. On the one hand, more precision will harm

interpretability since we need more symbols to describe numerical variables.

Less precision will improve interpretability but at the expense of harming

the confidence of rules. Another limitation is that experts must define the

symbols they want to produce semantically coherent explanations. For ex-

ample, it would be grammatically odd to describe the variable age in terms of

“low age” and “high age” instead of using the linguistic terms “young” and

“old”, respectively. Our future research effort will be devoted to inferring

such linguistic terms from the feature names.
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explanation module for fuzzy cognitive map-based reasoning models, in:

Bramer, M., Ellis, R. (Eds.), Artificial Intelligence XXXVII, pp. 21–34.

[18] Inuiguchi, M., Wu, W., Cornelis, C., Verbiest, N., 2015. Fuzzy-rough

hybridization, in: Kacprzyk, J., Pedrycz, W. (Eds.), Springer Handbook

of Computational Intelligence, pp. 425–451.

[19] Jayaram, B., Mesiar, R., 2009. On special fuzzy implications. Fuzzy

Sets and Systems 160, 2063–2085.

[20] Kumar, I.E., Venkatasubramanian, S., Scheidegger, C., Friedler, S.,

2020. Problems with shapley-value-based explanations as feature im-

portance measures, in: III, H.D., Singh, A. (Eds.), Proceedings of the

37th International Conference on Machine Learning, pp. 5491–5500.
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