INIVERS)

Outils pour I'lA

Introduction to Al
(Part 3 : Prolog Programming)

About the practical sessions

* Use GNU Prolog (install it on your machine): http://gprolog.univ-paris1.fr/
e Sessions can be found here (they are also given in Leuven):
http://labh-curien.univ-st-etienne.fr/~fromont/Prolog/

e Sessioniis dedicated to the assignment i (possibly i+1 or i+2 but not i-1 or
i-2...): make sure to complete them at home!

The project (game programming) can be started from session 4 on (in
parallel): 4h are dedicated to start the project if you keep the pace.

There will be a MCQ exam the 14/12 on the exercise sessions (1/2 of the
practical grade)

The project (code, report with the code (about heuristics), tests (the
relevance of the tests is very important for the grade) and comments) have
to be sent before 10/01/2014 (1/2 of the practical grade).

+ exam in the 15/12

Outline

Introduction

— Syntax of terms
Some simple programs
Terms as data structures, unification
Call, computation, search tree, mode
Arithmetic in Prolog

Recursion and Lists
Cut
Built-in meta predicates

— Findall, forall, ...

What is Prolog?

* Prolog is the most widely used language to
have been inspired by logic programming
research.

e Some features:

— Prolog uses logical variables. These are not the
same as variables in other languages.
Programmers can use them as ‘holes’ in data
structures that are gradually filled in as
computation proceeds.

...More Features

Unification is a built-in term-manipulation
method that passes parameters, returns
results, selects and constructs data structures.

Basic control flow model is backtracking.

Program clauses and data have the same
form.

The relational form of procedures makes it
possible to define ‘reversible’ procedures.

History of Prolog

Developed in 1970s by Alain Colmerauer, Phillip
Roussel (University of Marseilles, France)

David H. D. Warren provided foundations of
modern implementation in the Warren Abstract
Machine for DEC PDP-10 (University of
Edinburgh)

* Prolog is basis for numerous other languages
such as CLP(R), Prolog I, etc.

Not for general purpose programming

* More restricted computation model of
proving assertions from collections of facts

and rules
* Think of queries working on a database of
facts with rules that permit inferring new facts

* Query is just a theorem to be proven

Why restrict applicability of a
language?

* Prolog provides better built-in support for the
algorithms and tasks especially useful in search

problems
— Theorem proving is “just’ a search problem

* Search problems are incredibly important

— Exponential complexity

— But efficient techniques and heuristics help solve
practical programs in a timely fashion

Example applications

Medical patient diagnosis
Theorem proving

Solving Rubik’ s cube
Type checking

— Type inference in ML and Haskell is done in this way
Database querying

What a program looks like

[* At the Zoo */

elephant(george).
elephant(mary).

panda(chi_chi).
panda(ming_ming).

dangerous(X) :- big_teeth(X).
dangerous(X) :- venomous(X).

guess(X, tiger) :- stripey(X), big_teeth(X), isaCat(X).
guess(X, koala) :- arboreal(X), sleepy(X).
guess(X, zebra) :- stripey(X), isaHorse(X).

Prolog is a ‘declarative’ language

 Clauses are statements about what is true about a
problem, instead of instructions how to accomplish

the solution.

The Prolog system uses the clauses to work out how
to accomplish the solution by searching through the
space of possible solutions.

Not all problems have pure declarative
specifications. Sometimes extra-logical statements
are needed.

Example: Concatenate lists a and b

In an imperative language

In a functional language

In a declarative/
relational language

Complete Syntax of Terms

Constant
Names an individual

TN

Atom Number

alphal?7 0
gross_pay 1
john_smith
dyspepsia

+

=/=

"12Q&A’

Term

Compound Term

Names an individual
that has parts

likes(john, mary)
book(dickens, Z, cricket)
f(x)

[1, 3, 8(a), 7, 9]

-(+(15, 17), t)

15+17-t

Variable

Stands for an individual
unable to be named when
program is written

X
Gross_pay
Diagnosis
_ 257

Compound Terms

The parents of Spot are Fido and Rover.

parents(spot, fido, rover)

R\

Functor (an atom) of arity 3. components (any terms)

It is possible to depict the term as a tree:

parents

spot fido

Compound Terms

Some atoms have built-in operator declarations so they may
be written in a syntactically convenient form. The meaning is
not affected. This example looks like an arithmetic expression,
but might not be. It is just a term.

=/=(15+X, (0%a)+(2<<5)) =/=

A particular compound term: the list

[[3,5] [5X 9]
5

lists form a subclass of binary trees X

9 [

A vertical bar can be used as a separator to present a list in the form
[itemized-members | residual-list |

[X,31Y]
31[5,71]

1 3,5,7]
(3,51[7]]

The last point about Compound
Terms...

Constants are simply compound terms of arity O.

badger

means the same as

badger()

Structure of Programs

Programs consist of procedures.
Procedures consist of clauses.
Each clause is a fact or a rule.
Programs are executed by posing queries.

An example. ..

Example

Predicate

/

Procedure for elephant

Clauses

Rule

Example

Replies

(success or tailure)

Clauses: Facts and Rules

‘Drovided that’
/ turnstile’

Head :- Body. This is a rule.

Head. ‘\ This is a fact.

Full stop at the end.

Body of a (rule) clause contains goals.

Variables

Begin with an uppercase letter
Either “instantiated” or “uninstantiated”

X is instantiated means X stands for a particular
value (similar to binding)

Variables instantiations can be undone
— Used to produce multiple answers during search

Multiple uses of the same variable in same scope
must refer to same value

Variables are scoped
within a query

These two uses of X
must represent same value

?— person (X), female (X). X=karen

Read the comma as “and”

Variable arguments

Variables in queries are treated as existentially quantified

EXAMPLE
?- likes(X, prolog).

says “is (3X) likes(X, prolog) true?”

or “find X for which likes(X, prolog) is true”

Variables in program clauses are treated as universally quantified
EXAMPLE
likes(chris, X) :- likes(X, prolog).

expresses the sentence (VX) (likes(chris, X) < likes(X, prolog))

27

Interpretation of Clauses

Clauses can be given a declarative reading or a procedural
reading.

Form of clause: H - G,, G,, ..., G,.

“That H is provable follows from
goals G, G,, ..., G, being provable.”

Declarative reading:

Procedural reading: “To execute procedure H, the
procedures called by goals G, G,,
..., G, are executed first.”

Procedure calls

Execution involves evaluating calls, and begins with an
initial query (= initial resolvent)

Prolog evaluates the calls in a query sequentially,
in the left-to-right order, as written

?-a,d, e. evaluate a, then d, then e

(don’t forget) Convention: terms beginning with an upper-case
letter or an underscore are treated as variables

?- likes(chris, X). here, X is a variable

Computations (1/2)

A computation is a chain of derived queries, starting with the
initial query

Prolog selects the first call in the current query and seeks a
program clause whose head matches the call

If there is such a clause, the call is replaced by the clause body,
giving the next derived query

This is just applying the standard notion of procedure-calling in
any formalism

Computations (2/2)

initial query

program clause with
head a and body b, c

Starting with the initial query, the first call in it matches
the head of the clause shown, so the derived query is

?-b,c,d,e.

Execution then treats the derived query in the same way

Successful computations

A computation succeeds if it derives the empty query

?- likes(bob, prolog) query
likes(bob, prolog). program clause

The call matches the head and is replaced by the clause’s
(empty) body, and so the derived query is empty.

So the query has succeeded, i.e. has been solved

Finite failure

A computation fails finitely if the call selected from the
qguery does not match the head of any clause

?- likes(bob, haskell). Query

This fails finitely if there is no program clause whose
head matches likes(bob, haskell).

?- likes(chris, haskell). Query
likes(chris, haskell) :- nice(haskell). Program clause

If there is no clause head matching nice(haskell) then
the computation will fail after the first step

33

Infinite failure

A computation fails infinitely if every query in it is followed by a
non-empty query

?- a.
a:-a,b.

This gives the infinite computation
?-a.
?-a, b.
?-a, b, b.

This may be useful for driving some perpetual process

34

Multiple answers

A query may produce many computations
Those, if any, that succeed may yield multiple answers to the query
(not necessarily distinct)

?- happy(chris), likes(chris, bob).

?- likes(chris, bob).
?- happy(chris), likes(chris, bob).

2- i ?-li '
happy(chris). ?- likes(bob, prolog). ?-likes(bob, chris).
likes(chris, bob) :- likes(bob, prolog).
likes(chris, bob) :- likes(bob, chris).

these subtrees may or may not succeed,
<...etc...>

depending on what else is in the program

We then have a search tree in which each branch is a separate
computation:

Answers as logical consequences

A successful computation confirms that the conjunction in the initial
query is a logical consequence of the program.

?-a,d, e.
If this succeeds from a program P then the computed answer is

andae
and we have

Pl=aAndAe

Conversely: if the program P does not offer any successful
computation from the query, then the query conjunction is not a
consequence of P

Generalized matching (unification)

Matching a call to a clause head requires them to be

either already identical

or able to be made identical, if necessary by instantiating
(binding/unifying) their variables (unification)

?- likes(U, chris).
likes(bob, Y) :- understands(bob, Y).

Here, likes(U, chris) and likes(bob, Y) can be made identical (unify)
by binding U /bob and Y /chris
The derived query is

?- understands(bob, chris).

37

Unification (recall from logic)

 Two terms unify if substitutions can be made for any variables
in the terms so that the terms are made identical. If no such
substitution exists, the terms do not unify.

* The Unification Algorithm proceeds by recursive descent of
the two terms.

— Constants unify if they are identical

— Variables unify with any term, including other
variables

— Compound terms unify if their functors and
components unify.

Herbrand Unification algorithm
(cf. RepCo)

Recursive Procedure MGU (x,y)
If x=y = Return ()
If Variable(x) => Return(MguVar(x,y))
If Variable(y) => Return(MguVar(y,x))
If Constant(x) or Constant(y) = Return(False)
If Not(Length(x) = Length(y)) = Return(False)
g «+— [J
For i = 1..Length(x) do
s + MGU(Part(x,i), Part(y,i))
g < Compose(g,s)
X < Substitute(x,g)
y + Substitute(y,g)
Return(g)
End MGU

Procedure MguVar (v,e)
If Includes(v,e) = Return(False)
Else Return([v/e])

End

Examples
The terms f(X, a(b,c)) and f(d, a(Z, ¢)) unify.

The terms are made equal if d is substituted for X,
and b is substituted for Z. We also say X is

instantiated to d and Z is instantiated to b, or X/d,
Z/b.

Examples
The terms f(X, a(b,c)) and f(Z, a(Z, ¢)) unify.

AT RN
Vo S

b C

Note that Z co-refers within the term.
Here, X/b, Z/b.

Examples
The terms f(c, a(b,c)) and f(Z, a(Z, ¢)) do not unify.
f

Z/\a
RN

V4 C

No matter how hard you try, these two terms
cannot be made identical by substituting terms
for variables.

Exercise

Do terms g(Z, f(A, 17, B), A+B, 17) and
g(C, f(D, D, E), C, E) unify?

Exercise — Sol

Exercise — Sol

Exercise — Sol

Exercise — Sol
, A/D, Z/C

Exercise — Sol
D/17, A/17, Z/C

Exercise — Sol
'D/17, A/17, Z/C

Exercise — Sol
B/E, D/17, A/17, Z/C

Exercise — Sol
B/E, D/17, A/17,Z/

Exercise — Sol
C/17+E, B/E, D/17, A/17, Z/17+E

9

2 N

N AN A\

1717

Exercise — Sol
C/17+E, B/E, D/17, A/17, Z/C

Exercise — Sol
E/17, C/17+17, B/17, D/17, A/17, Z/C

Deterministic evaluations 1/5

Prolog is non-deterministic in general because the evaluation of a
query may generate multiple computations

If only ONE computation is generated (whether it succeeds or fails),
the evaluation is said to be deterministic

The search tree then consists of a single branch

Deterministic evaluations 2/5

all_bs([]).
all_bs([b|T]) :- all_bs(T).

This program defines a list in which every member is b
Now consider the query
?-all_bs([b, b, b]).
This will generate a deterministic evaluation
?-all_bs([b, b, b]).
?-all_bs([b, b]).
?-all_bs([b]).
?-all_bs([]).
?-.
So here the search tree comprises ONE branch (computation), which
happens to succeed

Deterministic evaluations 3/5

Prolog supplies the list-concatenation primitive append(X, Y, Z) but if it
did not then we could define our own:

app([], Z, 2).

app((UI XL Y, [UIZ] :-app(X,Y, Z).
Now consider the query ?-app([a,b],[c,d], L).

The call matches the head of the second program clause by making
the bindingsU/a X/[b] Y/[c,d] L/[alZ]
So, we replace the call by the body of the clause, then apply the
bindings just made to produce the derived query:
?-app(bl,[c,d], 2).
Another similar step binds Z /[b | Z2] and gives the next derived query
?-app([],[c, d], Z2).
This succeeds by matching the first clause, and binds Z2 /[¢, d |

The computed answer is therefore L /[a, b, ¢, d |
64

Deterministic evaluations 4/5

The mode of the query in the previous example was

?- app(input, input, output).
where the first two arguments were wholly-known input, whilst the third
argument was wholly-unknown output

However, we can pose queries with any mix of argument modes we wish

So there is a second way in which Prolog is non-deterministic: a program does not
determine the mode of the queries posed to it

Using the same program we can pose a query having the mode
?- app(input, input, input). such as
?-app([a,b],[c,d],[a, b, c,d]).
This gives just one computation, which succeeds, but returns no output bindings.
Take a query having mode ?- app(output, mixed, mixed). such as
?2-app(X,[blL],[a, E cd].
This succeeds deterministically to give the output bindings

X/[al],L/[c,d],E/D
65

Deterministic evaluations 5/5

This second kind of non-determinism is called input-output
non-determinism, and distinguishes Prolog from most other
programming formalisms

With a single Prolog program, we may pose an infinite variety of
queries, but with other formalisms we have to change the program
whenever we want to solve a new kind of problem

This does not mean that a single Prolog program deals with all
queries with equal efficiency

Often, in the interest of efficiency alone, we may well change a
Prolog program to deal with a new species of query

66

Non-deterministic evaluations

A Prolog evaluation is non-deterministic (contains more than one
computation) when some call unifies with several clause-heads
When this is so, the search tree will have several branches

, C. (two clause-heads unify with a)

1
T

(two clause-heads unify with b)

a:

a

o}
b:-g
C.

d.

e.

f.

A query from which calls to a or b are selected must therefore give

several computations .

Non-deterministic evaluations

Presented with several computations, Prolog generates them one at a
time

Whichever computation it is currently generating, Prolog remains
totally committed to it until it either succeeds or fails finitely

This strategy is called depth-first search

It is an unfair strategy, in that it is not guaranteed to generate all
computations, unless they are all finite

When a computation terminates, Prolog backtracks to the most
recent choice-point offering untried branches

The evaluation as a whole terminates only when no such choice-
points remain

The order in which branches are tried corresponds to the text-order of
the associated clauses in the program

Prolog’s strategy is called SLD resolution
it prioritizes the branches in the search tree

69

Efficiency

The efficiency with which Prolog solves a problem depends upon
the way knowledge is represented in the program
the ordering of calls

Change the earlier query and program to
?-d, e, a. different call-order
a:-c,b. different call-order

a :-f.

This evaluation
has only 8 steps,
whereas the
previous one had
10 steps

Exercise/Example

?- pair(percival, X).
?- pair(bertram, lucinda).
2- pair(X, daphne).
?- pair(apollo, daphne).
2- pair(X, Y).
?- pair(camilla, X).
2- pair(X, lucinda).
ir(X,

1.
2.
3.
4,
.
6.
/.
8.

Exercise 2

2- pair(X, john, martini).

2- pair(mary, susan, gin).

2- pair(john, mary, gin).

?- pair(john, john, gin).

2- pair(X, Y, gin).

?- pair(bertram, lucinda).

2- pair(bertram, lucinda, vodka).
2- pair(X, Y, Z).

1. ?
2. 7
3. ?
4. 7
. ?
6. ?
7. 7
8. ?

This definition forces X and Y to be distinct:

Another example (1/4)

(a) Representing a symmetric relation.
(b) Implementing a strange ticket condition.

berkshire surrey

[~ T\ -

wiltshire hampshire SUSSEX

How to represent this relation?
Note that borders are symmetric.

Example (2/4)

This relation represents

?
one ‘direction’ of border: What about the other:

(a) Say border(kent, sussex).

rder kent).
border(sussex, kent) border(sussex, kent).

border(sussex, surrey). .
border(surrey, kent). .

border(hampshire, sussex).
(b) Say

. - adjacent(X, Y) :- border(X, Y).
border(hampshire, berkshire). adjacent(X, Y) - border(Y, X).

border(berkshire, surrey).
border(wiltshire, hampshire).

(
(
(
(
border(hampshire, surrey).
(
(
(
(

border(wiltshire, berkshire). (c) Say
border(X;¥<=border(Y, X).

Example (3/4)

Now a somewhat strange type of discount ticket. For the
ticket to be valid, one must pass through an intermediate

county.

A valid ticket between a start and end county obeys the
following rule:

valid(X, Y) :- adjacent(X, Z), adjacent(Z, Y)

Example (4/4)

?- valid(wiltshire, sussex).

?- valid(wiltshire, kent).

?- valid(hampshire, hampshire).
2- valid(X, kent).

2- valid(sussex, X).

2- valid(X, Y).

Ex : a graph

Note that Prolog

can distinguish
between the 0-ary
constant a (the
name of a node) and
the 2-ary functor a
(the name of a
relation).

But what happens if...

This program works
only for acyclic graphs.
The program may

infinitely loop given a
cyclic graph. We need
to leave a ‘trail’ of
visited nodes. This is
accomplished with a
data structure (to be
seen later).

Exercise 1

* Letrel(aa,bb) means « aais in a (oriented) relation
with bb ». Express the queries:
Is there a relation btw alpha and beta?
Is there a symmetrical relation btw alpha and beta?
What is in relation with alpha?
What is in a symmetrical relation with alpha?
What is in relation with both alpha and beta?
What are the couples which share a symmetrical relation?

What are the objects for which there exist a reflexive
relation?

What are the triplets with in transitive relation?

Exercise 2: choose your menu
Database = Prolog Facts

%these are the starters

starter('Prawn Cocktail').

starter('Pate Maison').

starter('Avocado Vinaigrette').
starter('Stuffed Mushrooms').
starter('Parma Ham With Melon').
starter('Asparagus Soup').

% and here are the main courses
(vegetables are included!)

fish('Dover Sole').

meat('Fillet Steak').
meat('Calves Liver').
meat('Chicken Kiev').
meat('Ragout Of Lamb').
fish('Poached Salmon').

% the desserts follow here

dessert('Chocolate Fudge Cake').

dessert('Vanilla Ice Cream').

dessert('Peach Melba'). dessert('Waffles
With Maple Syrup'). dessert('Fresh Fruit
Salad'). dessert('Apple And Blackberry
Pie').

% and these are the wines wine('Chablis').
wine('Muscadet Sur Lie'). wine('Beaujolais
Nouveau'). wine('Nuits Saint George').
wine('Gewurztraminer'). wine('Cabernet
Shiraz').

Exercise 2: express in Prolog

|s the « Asparagus Soup » a starter?

. What are all the starters?
. A main dish is either a fish dish or a meat

. Any meal consists of a starter, a main dish, a
dessert and a wine.

. We would like to choose a meal with meat (give
two possible queries, which one is the most
efficient? 2 draw the call tree)

Arithmetic

Arithmetic expressions use the standard operators such
as + - * / (besides others)

Operands are simple terms or arithmetic expressions

(7 +89 *sin(Y+1))/ (cos(X) +2.43)

Arithmetic expressions must be ground at the instant
Prolog is required to evaluate them

84

Comparing arithmetic expressions (1/3)

E1 ==E2 tests whether the values of E1 and E2 are equal
E1=\=E2 tests whether their values of E1 and E2 are unequal
E1<E2 tests whether the value of E1 is less than
the value of E2
Likewise we have
> for greater
>= for greater or equal
=< for equal or less

?- X=3, (2+2) =:= (X+1). succeeds
?- (2+2) =:= (X+1), X=8. gives an error
?- (2+2) > X. gives an error

Comparing arithmetic expressions (2/3)

The value of an arithmetic expression E may be computed and
assigned to a variable X by the call

Xis E

?7- X is (2+2). succeeds and binds X / 4
?7-4 is (2+2). succeeds

?7-5 is (2+2). gives an error

?7- X is (Y+2). gives an error

Comparing arithmetic expressions (3/3)

Do not confuse is with =

X=Y means “X can be unified with Y” and is rarely needed

succeeds and binds X / (2+2)
does not give an error, but fails
succeeds and binds X / (Y+2)

The "is” predicate is used only for the very specific purpose

variable is arithmetic-expression-to-be-evaluated

Exercise 3: birthday database

person(paul, 10,5, 1992)
person(pierre, 29, 2, 1992)
person(arnaud, 10, 3, 2011)
person(luc, 14, 1, 2005)
person(michele, 21, 2, 2012)
person(laurence, 29,2, 1924)
person(elodie, 10, 5, 1934)
person(alain, 17, 11, 1977)
person(veronique, 22, 5, 1956)
person(lucie, 10, 12, 1940)
person(sophie, 30, 11, 1994)
person(victor,1,12, 1994)
person(philippe, 2, 12, 1994)
person(andre, 21, 4, 1947)

Exercise 3

Write the predicate “curious(N)” which prints the name of the persons
born the 29/02.

Write the predicate “baby(N)” which prints the name of the babies born
in the last 2 years.

Write the predicate “age(N,V)” which prints the name and the age of a
person.

Write the predicate “active(N)” which prints the name of the persons
which are (strictly) more than 23 and (strictly) less than 63

Write the predicate “lucky(N)” which prints the name of the persons
which are either less than 23 or more than 63.

Write the predicate “adult(N)” which prints the name of the persons
above 18.

You can use the predicate date (X) which is always true and
unify X with datime(Year, Month, Day, Hour, Minute, Second).

Outline

Introduction
Recursion and Lists
Cut

Built-in predicates

© Patrick Blackburn, Johan Bos &
Kristina Striegnitz

NB: Some slides are taken from

Recursion?

* We want to compute the sum of all digits in a given
number.

— E.g. if the number is 26, we must return 8 (=2 + 6); if the
number is 13758, we must return 24.

* First, some remarks on iteration and recursion for
people who know other programming languages
such as C/C++, Java, Pascal, ...

— (don't worry if you do not know any of these languages !).

The C/C++, Java, ... -style

* |In most programming languages one can iterate an
instruction with for, while or repeat (this repeats the
instruction until some condition holds). A typical 'iterative'
solution for our example-problem is the next program (this is
not prolog):

total = 0

while number>9 do

total = total + (number mod 10)
number = number / 10

total = total + number

The prolog-style

* No for, while or repeat. In prolog iteration is done through
recursion: define the solution of the complete problem in
terms of solving a smaller variant of the same problem.

* More precisely, we can solve our example-problem in prolog

as follows:

— we express the solution as either the solution of the 'simple case' (the
number only has one digit) or

— we reduce the problem to a simpler variant of the problem, namely
for a number with one digit less.

Count

% the simple case: if the number has only one digit
% then this number is the sum of all digits
count (Number,Number) : - Number < 10.

/* the recursive case: cut away the first digit, let someone (=recursive call) add the rest, and add
your digit to that sum. */

count (Number, Sum) : -
Number >= 10,
Digit is mod(Number,10),
NewNumber is Number // 10,
count (NewNumber, TmpSum), Sum is TmpSum + Digit.

In prolog we denote 'larger or equal' as '>='". Less or equal is denoted '=<‘ (NB: you always 'point’
towards the equal sign.) '//' stands for integer division (X is 555 / 10 results in X being 55.5, but X
is 555 // 10 results in X being 55).

Draw a call tree for a call of count(437,Result).

Exercise 4

Suppose a group of students gets the following
Instructions:

— if you receive from your left neighbour a piece of paper
with a single letter on it, go to the blackboard and write

that letter on it, then return to your seat

— if you receive from your left neighbour a piece of paper
with more than one letter on it, tear the first letter off,
give the rest of the paper to your right neighbour, and
when he/she is finished with 'processing' that piece of
paper, go to the blackboard and write your letter on it (to
the right of what has been written on it already)

Exercise 4 cont.

What does this ‘program’ do?

What would appear on the blackboard if the
leftmost student is given a piece of paper with the
word 'hello'?

Try to write a prolog program that solves this task.

— You may assume that there is a predicate split_string that
splits a word into the first letter and the rest of the word.
E.g. ?-split_string('hello’,First,Rest) results in First being 'h'
and Rest being 'ello'. Of course, you can also use the built-
in predicate « write »

Exercise 5

1. Write a predicate all_even/1 taking as input a number. The
predicate should succeed if all digits in that number are

even, otherwise it should fail.
— Draw a call tree for all_even(2496).

2. Write a predicate count_even/2 taking as input parameter a
number. The output parameter should be the number of
even digits in the input-number. E.g. count_even(24,A)
should result in A being 2; count_even(25,A) should result in
A being 1.

— Draw a call tree for these two examples.

Exercise 6

* Try to understand the following program.
even(N):- A is mod(N,2),
A = 0.
odd(N):- A is mod(N,2),
A =1.

funny(l):- write('I will quit'),nl.
funny(N) : -

even(N),

write(N), nl, %

NewN is N // 2,

funny (NewN) .
funny(N) : -

odd(N),

write(N), nl, % <-this

N>1,

NewN is 3 * N + 1,

funny (NewN) .

Exercise 6 cont.

What is the result of the query funny(6) (if you only ask for
the first answer of Prolog)?

Write down what prolog would write to the screen.
Do the same for funny(7)?

What happens when you put the two lines with write(N), nl
(marked with % <-this) before the even(N) and odd(N) in the
definition of funny/1?

What would be the second answer of Prolog if you ask for
another solution ?

Lists?

An important recursive data structure often used in Prolog
programming

* Alistis a finite sequence of elements
 Examples of lists in Prolog:

'mia, vincent, jules, yolanda]

'mia, robber(honeybunny), X, 2, mia]
]
'mia, [vincent, jules], [butch, friend(butch)]]
[], dead(z2), [2, [b,c]], [], Z, [2, [b,c]]]

Definitions

(1 is the empty list

. predicate is like Scheme’s cons:
?_A:'(ll -(21 -(3/ [1))) .

...]1 shorthand syntax:
>~ A = [1,2,3]

[E1l...|Tail] notation
°— A = [1,2]3].
- A = [1,2|[3]1].

Exercise 7

* Can you guess the result of the following
gueries?

1. ?-
2. ?-
3. ?-

A,B] =.(a, .(.(b,.(c,[])),.(d,[]))).
A,B,C] = .(a, .(.(b,.(c,[])),.(d,[]))).

A,B,C,D] = .(a, .(.(b,.(c,[])),.(d,[])).

Head and Tail

* A non-empty list can be thought of as
consisting of two parts

— The head
— The tail

e The head is the first item in the list

* The tail is everything else

— The tail is the list that remains when we take the
first element away

— The tail of a list is always a list

Head and Tail example 1

* [mia, vincent, jules, yolanda]

Head:
Tail:

Head and Tail example 2

* [[1, dead(z), [2, [b,cll, [1, Z, [2, [b,c]]]

Head:
Tail:

Head and Tail example 3

e [dead(z)]

Head:
Tail:

Head and tail of empty list

* The empty list has neither a head
nor a tail

* For Prolog, [] is a special simple list without
any internal structure

* The empty list plays an important role in

recursive predicates for list processing in
Prolog

The built-in operator |

* Prolog has a special built-in operator | which
can be used to decompose a list into its head

and tail

 The | operator is a key tool for writing Prolog
list manipulation predicates

The built-in operator |

?- [Head|Tail] = [mia, vincent, jules, yolandal].

Head = mia
Tail = [vincent,jules,yolanda]
yes

?-

The built-in operator |

?- [X|Y] = [mia, vincent, jules, yolanda].

X = mia
Y = [vincent,jules,yolanda]
yes

?-

The built-in operator |

?-[X[Y] =[]
no

?-

The built-in operator |

?- X\Y[Tail] = [[], dead(z), [2, [b,c]], I, Z, [2, [b,c]]]

X=[]

Y = dead(z)

Z = 4543

Tail = [[2, [b,c]], [], Z, [2, [b,c]]]
yes

?-

Notice: Lists need not be
homogeneous

= "H4i". A=[72,105]

[1,"H1",greqg]. A=[1,172,105],greqg]

[:I-Ig]l B=[A,A]. A:[llg]
B=| [l/g] ’ [llg]]

A:[l/g]
B=| [119] rlrg]

Exercise 8

* Will these queries succeed? If so, what will be the variable
bindings? If not, why does it fail? If you are not sure, draw the
tree representations of the lists!!

?-.(a, .(b, .(c,.(d,[1)))) = [A,B]|C].

?- [A[B] = .(a, .(.(b,.(c,[])),-(d,[])))-
?- [A,B[C] = .(a, .(.(b,.(c,[])),-(d,[])))-
>-[a,b[[l]=[H]T]L
°-[a,b,c]=[E1,E2 | T].
-X=a,Y=[1,[23]],Z=[X] Y]
>-X=a,Y=[1,1[23]],Z=[XY].
-X=1[a],Y=1[1,1[2,3]],Z=[X| Y].

1.
2.
3.
4.
5.
6.
7.
8.

Anonymous variable

* Suppose we are interested in the second
and fourth element of a list

?- [X1,X2,X3,X4|Tail] = [mia, vincent, marsellus, jody, yolanda].
X1 =mia

X2 = vincent

X3 = marsellus

X4 = jody

Tail = [yolanda]

Anonymous variables

* There is a simpler way of obtaining only
the information we want:

?-1 _,X2, ,X4|] =[mia, vincent, marsellus, jody, yolanda].
X2 = vincent

X4 = jody

yes

?-

The underscore is the anonymous
variable

The anonymous variable

* |s used when you need to use a variable, but

you are not interested in what Prolog
instantiates it to

* Each occurrence of the anonymous variable is

independent, i.e. can be bound to something
different

Member

* One of the most basic things we would like to
know is whether something is an element of a
list or not

* So let’s write a predicate that when given a
term X and a list L, tells us whether or not X
belongs to L

* This predicate is usually called member/2

member/2

member(X,[X]|T]).
member(X,[H|T]):- member(X,T).

?- member(yolanda,[yolanda,trudy,vincent,jules]).

member/2

member(X,[X]|T]).
member(X,[H|T]):- member(X,T).

?- member(yolanda,[yolanda,trudy,vincent,jules]).

yes
2.

member/2

member(X,[X]|T]).
member(X,[H|T]):- member(X,T).

?- member(vincent,[yolanda,trudy,vincent,jules]).

member/2

member(X,[X]|T]).
member(X,[H|T]):- member(X,T).

?- member(vincent,[yolanda,trudy,vincent,jules]).

yes
2.

member/2

member(X,[X]|T]).
member(X,[H|T]):- member(X,T).

?- member(zed,[yolanda,trudy,vincent,jules]).

member/2

member(X,[X]|T]).
member(X,[H|T]):- member(X,T).

?- member(zed,[yolanda,trudy,vincent,jules]).

no
?-

member/2

member(X,[X]|T]).
member(X,[H|T]):- member(X,T).

?- member(X,[yolanda,trudy,vincent,jules]).

member/2

member(X,[X]|T]).
member(X,[H|T]):- member(X,T).

?- member(X,[yolanda,trudy,vincent,jules]).
X = yolanda;

X = trudy;

X = vincent;

X = jules;

no

Rewriting member/2

Recursing down lists

* The member/2 predicate works by recursively
working its way down a list

— doing something to the head, and then

— recursively doing the same thing to the tail

* This technique is very common in Prolog and
therefore very important that you master it

* So let’s look at another example!

Example: a2b/2

* The predicate a2b/2 takes two lists as
arguments and succeeds

— if the first argument is a list of as, and

— the second argument is a list of bs of exactly
the same length

?- a2b([a,a,a,a],[b,b,b,b]).
yes
?- a2b([a,a,a,a],[b,b,b]).
no
?- a2b([a,c,a,a],[b,b,b,t]).
no

Defining a2b/2: step 1

e Often the best way to solve such problems
is to think about the simplest possible case

* Here it means: the empty list

Defining a2b/2: step 2

* Now think recursively!

* When should a2b/2 decide that two non-
empty lists are a list of as and a list of bs of
exactly the same length?

Testing a2b/?2

a2b([1.01)-
a2b([a|L1],[b|L2]):- a2b(L1,L2).

?- a2b([a,a,a],[b,b,b]).

yes
2.

Testing a2b/?2

a2b([1.01)-
a2b([a|L1],[b|L2]):- a2b(L1,L2).

?- a2b([a,a,a,a],[b,b,b]).
no
?2-

Testing a2b/?2

a2b([1.01)-
a2b([a|L1],[b|L2]):- a2b(L1,L2).

?- a2b([a,t,a,a],[b,b,b,c]).
no
?2-

Further investigating a2b/2

a2b([1.01)-
a2b([a|L1],[b|L2]):- a2b(L1,L2).

?- a2b([a,a,a,a,a], X).
X =[b,b,b,b,b]

yes
2.

Further investigating a2b/2

a2b([1.01)-
a2b([a|L1],[b|L2]):- a2b(L1,L2).

?- a2b(X,[b,b,b,b,b,b,b]).
X =[a,a,a,a,a,a,a]

yes
2.

Exercise/Example

Let L = [a,2,c,4]. Write a prolog predicate elemodd/2 that
creates a list with only the element at an odd position in the

input list so [a,c].

Think about how you can use the recursion
Think about how you can go through your list
Think about how to stop going through your list
Think about the different possible cases

Think about how to give the result back

Exercise 9

Write a predicate listlength(+,?) that, given a list, counts the number of
elements in that list (we call this the length of the list).

— Think about the basic clause. What is the most simple list for which we can solve this
problem? Some people will think of a list that only contains a single element, but there
exists an even simpler list: the empty list!

Think about the recursive clause: if | can solve a smaller problem, how can | solve this
problem? A smaller problem is counting the number of elements in a shorter list.
Suppose | split the given list into its head and tail and | can solve the problem for the
tail, how to solve the problem for the complete list?

What will be the result of the following queries
listlength([1l,[2,3]],L).
listlength([1][2,3]],L).

Does this predicate work like you had expected?

Exercise 10

Do the following queries succeed or fail? In case of success, what

are the variable bindings?
. ?2—- length(List,3).
. ?2- length(List,3), nth element(1l,List,a).

. ?2- length(List,3), nth element(1l,List,a),
nth element(2,List,b), nth element(3,List,c).

The definitions of length (+, ?) and nth_element/3 are the usual ones:
length([],0). nth element(1,[H|],H).
length([_|T],N) :- nth element(N,[|T],E) :-
length(T,N2), N>1,
N is N2+1. N1 is N-1,
nth element(N1],T,E).

Append

* Write the predicate append/3 such that
append(L1,L2, L3) succeeds if L3 is the
concatenation of L1 and L2.

?-append([a,c],[b],L).
L = [a,c,b]
yes

We can NOT use L3 = [L1IL2] to concatenate (or
append) two lists.....why?

Accumulating Parameters

* An often used technique in Prolog is that of using an
accumulating parameter: we gradually build up a 'result' in a
parameter, and we return this result when we arrive in the
base case.

* An advantage of accumulating parameters is that they can be
used to make a program 'tail-recursive' (roughly speaking, a
program is tail-recursive if the recursive call is at the very end
in the body of the recursive clause).

* This is good because a tail-recursive program uses less
memory than its non-tail-recursive counterpart.

Efficiency issues

Sometimes using an accumulating parameter also makes a
program faster. Suppose we want to reverse a list. Without
accumulating parameter we can write this as follows:

reverse([], [])-
reverse([Head|Tail], Reversed):-
reverse(Tail, TailReversed),

append(TailReversed, [Head], Reversed).

This program has quadratic time-complexity (i.e. the time
needed to reverse a list with N elements using this program is
proportional to N?)!

Reduced complexity

e Using an accumulating parameter, we can get a program with
linear time-complexity (time proportional to N).
reverse(List, Reversed):-

reverse acc(List, Reversed, []).

% the accumulater is initially empty
reverse acc([], Result, Result).

% Return the result (=the accumulated data)

reverse acc([Head|Tail], Result, Acc):-
reverse acc(Tail, Result, [Head|Acc]).

Built-in predicates for list
processing (in GNU Prolog)

append(Listl, List2, List12): succeeds if the concatenation of the list List1 and
the list List2 is the list List12. This predicate is re-executable on backtracking
(e.g. if List12 is instantiated and both Listl and List2 are variable).

member(Element, List): succeeds if Element belongs to the List.
memberchk/2 is similar to member/2 but only succeeds once.

reverse(Listl, List2): succeeds if List2 unifies with the list List1 in reverse
order.

delete(List1l, Element, List2): removes all occurrences of Element in List1 to
provide List2. A strict term equality is required, cf. (==)/2

select/3, subtract/3 , permutation/2 , prefix/2, suffix/2 , sublist/2 , last/2,
length/2 , nth/3 ,max_list/2, min_list/2, sum_list/2 , maplist/2-8, sort/2,
msort/2, keysort/2 sort/1, msort/1, keysort/1 ...

Introduction

Lists

Cut

Built-in predicates
Parsing using Prolog

Outline

Backtracking is not
always what we want

e Patterns may match where we
do not intend

* Backtracking is expensive—
we may know more about our problem and can

help the algorithm be “smarter”

* We may want to specify a situation that we know
definitively results in failure

delete all example

/* delete_all(List,E,Result) succeeds if Result is a list just like
List except that all elements E are missing. */

delete all([], E, []).

delete all([E|Ta1l], E, Res)
delete all (Tail, E, Res).

delete all ([Head|Tail], E, [Head|Res])
delete all(Tail, E, Res).

A query for delete all

?- delete all([1,2,3],2,R).

delete all can succeed
in any of three ways...

delete all([], E, []).

delete all ([E|Ta1l], E, Res) :-
delete all(Tail, E, Res).

delete all ([Head|Tail], E, [Head|Res]) :-
delete all(Tail, E, Res).

= QOrderin file only tells which rules are attempted
first—later matching rules can be used after
backtracking!

delete all has multiple matching rules

delete all([E|Ta1l], E, Res) :-
delete all(Tail, E, Res).

delete all ([Head|Ta1l], E Head|Res]) :-

r By |
delete all(Tail, E, Res).

delete_all([2,3],2,R).
" (Can be proven using either of the above!
R=[3], or R=[2,3]

Third rule contained implicit
assumption

delete all ([Head|Tail] E Head|Res]) :-

[
14 14
delete all(Tail, E, Res).

Want above rule to apply only when Head is not
E

That is exactly the complement of rule 2

So we can make the algorithm only try rule 3 if
rule 2 did not succeed

Use a “cut’ — !

* We can make rule 2 prevent backtracking with
the “cut” operator, written |
delete all ([E|Ta1l], E, Res) :-
delete all(Tail, E, Res), !.
* Now the search algorithm will not try any other
rules for delete all after the above rule succeeds

* | succeeds and stops further backtracking for
more results

The query again

?- delete all([1,2,3],2,R).

= Now we get only the single correct solution!

Cut effect

A program clause having a cut looks like:
head :- preceding-calls, !, other-calls.

The cut acts only when it is selected as the next call to be
evaluated, and it then
« prunes all untried ways of evaluating

whichever call invoked in the clause containing the cut

(all clauses below the one with the cut are discarded, as if they did not exist for
this particular call)

and
* prunes all untried ways of evaluating
the calls in this clause which precede (left of) the cut

NB: The goals at the right of the cut are executed normally (i.e., they can backtrack).

Cut divides problem
into backtracking regions

foo := a, b, ¢, !, d, e, f.

e Search may try various ways to prove a, b, and c,
backtracking freely while solving those sub-goals

* Once a, b, and c are proved, that sub-answer is
frozen, and d, e, f must be proved without
changing a, b, or c

Controversy over cut

* Prologis meant to be declarative

e cut operator alters the behavior of the built-in
searching algorithm

* No declarative interpretation for cut—
vou must think about resolution to
understand its effects

cut and not

We can write the not predicate using
a cut operator:

not (P) := P, !, fail.

not (P) .

Uses built-in fail predicate that always fails

Cut operator prevents the search algorithm from
backtracking to use the second rule to satisfy P
when the first rule already failed

2nd rule applies only if P cannot be proven

| fail combination

e Another common use of the cut is with fail

e Use to force failure in special cases that are easy
to rule out immediately

average taxpayer (X) :-
lives 1n bermuda (X), !,

average taxpayer (X) :-
/* complicated rules here... */

IF THEN ELSE

% = max(X, Y, Z)
% true if Zis the max btw XandY.

max (X

Z) :-
=Y,

4

' Y,
X >
|
Z

= X.

max(X,Y,Y).

Tree view of a cut

/]\m

\ WEAL]*

Tree view of a cut

EXAMPLE

This program tests a term X and prints a comment

The intention is that if X is a number then
the comment is yes but is otherwise no

comment(X) :- number(X), !, write(yes).
comment(X) :- write(no).

Will it work (assuming X is ground)?

EXAMPLE - call tree (1/2)

?7- comment(6).

/\

?- number(6), !, write(yes). ?- write(no).

| "\

?7- 1, write(yes).

?7- write(yes).

B This case works correctly

EXAMPLE - call tree (2/2)

?- comment(a).

/\

?7- number(a), !, write(yes). ?- write(no).

This case also works correctly

BUT - suppose we reorder the clauses as:
comment(X) :- write(no).
comment(X) :- number(X), !, write(yes).

?7- comment(6).

/\

?- write(no). ?7- number(6), !, write(yes).

| S

?- 1, write(yes).

?- writ :
Wrongly gives both answers ‘ AREEES

-

Exercise 11

ppO(X,Y):- qq(X), aq(Y).
pp0(0,1).

pp1(X,Y):- qq(X), qq(Y), !.
pp1(0,1).

pp2(X,Y):- qq(X),!, aq(Y).
pp2(0,1).

aq(l).

aq(2).

Draw the call tree for the calls ?-pp0O(X,Y).
?-ppl1(X,Y).
?-pp2(X,Y).

Exercise 12: back to the menu

* What is the answer to the following calls:
1. ?-meal(A,B,C,D), !.
2. ?-meal(A,B,C,D), meat(B), !.
3. ?-meal(A,B,C,D), |, meat(B).

Exercise 13: remove/add

* Write (with and without CUT) the predicate
remove(+P, +E1, -E2) which succeeds if the list E2 =
the list E1 — {P} (fail if P is not in E1). E2 and E1 do not
contain duplicates.

Write (with and without CUT) the predicate add(+P,
+E1, -E2) which succeeds if the list E2 = the list E1 +
{P} (I]C Pis already in E1, E2 = El). You can use

memberset(X,E) which succeeds if an element X is in a set E and the
predicate \+(predicate) which mean -predicate.

Exercise 14: Women and children first

* Consider that the predicates male/1, female/1
and age/2 exist.

Write the predicate save(+X) which succeeds if X
can be saved (if it isa man under 14 or a

woman).
— Try without the cut first

— Write a version with the cut (be careful with the
position of the cut)

Another example

Define least(X, Y, L) to mean “L is the least of X and Y~

least(X, Y, X) :- X<Y, |.
least(X, Y, Y).
?- least(1, 2, L). correctly succeeds, binding L / 1
1, L). correctly succeeds, binding L/ 1

L
L

1
?- least(2,

BUT ...

wrongly succeeds

?- least(1, 2, 2)
b, b wrongly succeeds

?- least(a, b, b)

and this happens however the clauses are ordered

Cut: THE GREAT MORAL

If you can reasonably avoid using cut, do so
If you must use it, take great care with clause order
In any event, compute only the TRUTH

comment(X) :- number(X), write(yes).

comment(X) :- \+number(X), write(no).

This program, having no cut, potentially evaluates
number(X) twice, depending on the query - a small overhead

Exercise 15

Given the base:
prop(1).
prop(3).
prop(5).
(which define that the integer 1,3, 5 have the property « prop »)

Write the predicate all(+L) which succeeds if all elements in the list L
have the property “prop”.

Write the predicate none(+L) which succeeds if no element in the list L
has the property “prop”.

Write the predicate one(+L) which succeeds if there exists at least one
element in the list L with the property “prop”.

Write the predicate onenot(+L) which succeeds if there exists at least
one element in the list L without the property “prop”.

Outline

Introduction

Lists

Cut

Built-in predicates (most of the time extra-

o“:_7

logical predicates such as =/= or “is” or \==

TYPE-CHECKING

To check argument types you can make use of the following, which
are supplied as primitives:

atom(X) X is an atom

number(X) X Is a number

integer(X) X Is an integer

var(X) Xis (an unbound) variable
nonvar(X) X Is not a variable
compound(X) X is a compound term

Prolog INPUT/OUTPUT

e Use built-in predicates (ex: write, read)

 The logical meaning of those predicates is “true” but we only
care about the side effects (here to read or write a term)

/* write liste(Liste): write the Liste in the terminal
with one element on each line*/

write liste([]).

write liste([X|Xs]) :-
write(X),nl,
write liste(Xs).

Example INPUT/OUTPUT

* The following program:
— Read the name of the Input and Ouput files

o »”n

 The name should finish by “.

— Collect the current « stdin » and « stdout » and
redirect it.

— For each input, call the predicate « work(X) »
— Put everything as it was before at the end.

example :-
write(’'Input file: '),
read(FilelIn),
write(‘Output file: '),
read(FileOut),
open(FileIn, read, In),
open(FileOut, write, Out),
current input(Stdin),

set input(In),

current output(Stdout),
set output(Out),
repeat,
read(X),
(X == end of file ->
';
work(X), nl, fail
) 1
set input(Stdin),
close(In),
set output(Stdout),

close(Out).

work(X) :- write(X). /%this is just a stupid program

Input/ Output: format

* format(+stream_or_alias,
+character_code_list_or_atom, +list)

 format(+character code list or atom, +list)

format(SorA, Format, Arguments) writes the Format
string replacing each format control sequence F by the
corresponding element of Arguments (formatted
according to F) to the stream associated with the
stream-term or alias SorA.

Format examples

% = write_liste(Liste)

format(’ ~wW [Terme]) % ~w = write — :
’ ° % ecrit Liste vers le terminal, avec

format(~w~n', [Terme]) % ~n = nl

, , % chaque element sur une ligne.
format(" - ~w~n" [Terme])

= L write_liste([]).
wr%te(-) write_liste([X | Xs]) :-
write(Terme), format(- ~w~n’, [X]),
nl write_liste(Xs).

Disjunction

Disjunction between calls can always be expressed using
procedures offering alternative clauses

out_of_range(X, Low, High) :- X<Low.
out_of_range(X, Low, High) :- X>High.
Equivalently, use Prolog’s disjunction connective, the semi-colon

out_of_range(X, Low, High) :- X<Low ; X>High.
With mixtures of conjunctions and disjunctions, use parentheses to

avoid ambiguity:

a:-b,(c;(de).

Negation (1/7)
Prolog does not have an explicit connective for classical

negation.
It is arguable that we do not need one

iInnocent(X) < —-guilty(X) In classical logic

In practice we do not establish the innocence of X by
proving the negation of “X is guilty”

Instead, we establish it by finitely failing to prove “X is guilty”

Negation (2/7)

Prolog provides a special operator \+ read as
“finitely fail to prove”

So in Prolog we would write
innocent(X) :- \+quilty(X).

The operational meaning of \+ is

\+P succeeds iff P fails finitely
\+P fails finitely iff P succeeds

Negation (3/7)

person(bob). likes(bob, frank).
person(chris).
person(frank).

sad(X) :-
person(X),
person(Y), X\==Y, \+likes(Y, X).

“X is sad if someone else fails to like X”

Using the data, bob, chris and frank are sad,
because in each case someone else fails to like them

Negation (4/7)

\+ does not perfectly simulate classical negation

P < -p classically implies p but
P :- \4p. cannot solve 7-p.
(it will fail infinitely, not finitely)

So, p is a logical consequence in the first case, but is not a
computable consequence in the second

Negation (5/7)

person(bob). likes(bob, frank).
person(chris).
person(frank).

very_sad(X) :-
person(X),
\+ (person(Y), X\==Y, likes(Y, X)).

“Xis very sad if no one else likes X”
Here, just bob and chris are very sad,
because in each case no one else likes them

Syntax Note - essential to put a space between \+ and (

Negation (6/7)

We can reformulate the previous example as

very_sad(X) :- person(X), \+liked(X).
liked(X) :- person(Y), Y \== X, likes(Y, X).

This is the safe option:
if our Prolog does not reject non-ground \+ calls then it may
compute intuitively wrong answers when it evaluates them

The above \+liked(X) call is ground when it is selected, because
the person(X) call has already grounded X

Rgs Negation (7/7)

The \+ operator partially compensates for the head of a
clause

being restricted to a single predicate
If we want to use the knowledge that, say,

A v B <= C we can approximate it

by A:-C,\+B.
orby B :-C,\+A
or by both of them together

GENERATE-AND-TEST: forall

Generate-and-test is a feature of many
algorithms

It can be formulated as
generate items satisfying property P,
test whether they satisfy property Q

P acts as a generator Q acts as a fester

Example 1

“Xis happy if all friends of X like logic”
In classical logic we can express this by

happy(X) < (VY)(friend(X, Y) — likes(Y, logic))
In Prolog we can rewrite this as

happy(X) :- forall(friend(X, Y), likes(Y, logic)).

in which the forall will

generate each friend Y of X
test whether Y likes logic

Example 2

Show that L is a list of positive numbers

all_pos_nums(L) :- is_list(L),
forall(member(U, L), (hnumber(U), U>0)).

and some appropriate is_list procedure

Remarks about Forall

* Could be defined manually as:
forall(P, Q) :- \+ (P, \+ Q).
“no way of solving P fails to solve Q”
« Note that forall does not perfectly simulate V
(V...)(P — P) is true in classical logic
but

forall(P, P) succeeds only if the number
of ways of solving P is finite

AGGREGATION: findall

« Often we want to collect into a single list all those items
satisfying some property
« Prolog supplies a convenient primitive for this:
findall(Term, Call-term, List)

likes(frank, chris).
likes(chris, logic).
likes(chris, frank).

To find all those whom chris likes:
?- findall(X, likes(chris, X), L).

this returns L /[logic, frank]

Example 1

« To find all sublists of [a, b, ¢] having length 2:
?- findall([X, Y], sublist([X, Y],[a, b, c]), S).
thisreturns S/[[a,b],[b,c]]

« @iven any list X, construct the list Y obtained by replacing each
member of X by E:
replace(X, E, Y) :- findall(E, member(_, X), Y).
Then,
?-replace([a, b, c], e, Y).
returnsY /[e, e, e]

?-replace([a,b,c],[0],Y).
returns Y/[[0],[0],[0]]

Example 2

« Construct a list L of pairs (X, F) where X is a person and F is a list of
all the friends of X:

friend list(L) :-
findall((X, F),
(person(X), findall(Y, friend(X, Y), F)),
L).
So here we have a findall inside a findall

« Construct a list L of persons each of whom does whatever
chris does:
clones of chris(L) :-
findall (X, (person(X),
forall (does(chris, Y), does(X, Y)))
, L).
So here we have a forall inside a findall

Example 3

Given a list L of classes, test whether all of them contain more
females than males:
mostly female classes(L) :-
forall(
(member(C, L),
findall(F, (member(F, C), female(F)), Fs),
findall (M, (member(M, C), male(M)), Ms),
length(Fs, NF),
length(Ms, NM)

) +
NF > NM).

So here we have findalls inside a forall

META-PROGRAMMING

This concerns programs that variously access, control or
analyse other programs or their components

It is a feature of many declarative formalisms and gives them a
high degree of expressiveness

It is approximately comparable to the use of higher-order
functions in a functional programming language

In Prolog, most meta-programming exploits the fact that
terms and predicates have
identical syntactic structure

EXAMPLE

overcome_with_joy(X) :- user_of(X, prolog).

In the above, user_of(X, prolog) is a predicate

overcome_with_joy(X) :- true_that(user_of(X, prolog)).

In the above, user_of(X, prolog) is an argument (term)

BUILT-IN META-PREDICATES

We have already met some of these:
\+P forall(P, Q) findall(Term, Q, List)

Here, P and Q are object-level arguments,
but are interpreted as call-terms at the meta-level

Their run-time manipulation can use the same unification mechanism

as used for ordinary object-level terms

choose(X, wants(chris, X)).

?- choose(Y, Q), forall(nice(Y), Q).
From this query we get the derived query

?- forall(nice(Y), wants(chris, Y)).
by binding X 1Y, Q/wants(chris, Y)

The =.. primitive

This is another built-in meta-predicate
It relates a term to a list comprising that term’s principal

functor and arguments

chris=.. L binds L/
happy(chris) =.. binds L/
likes(X, prolog) =.. L binds L/
T =.. [append, X, Y, Z] binds T/

chris]

happy, chris]
likes, X, prolog]
append(X, Y, Z)

T=.1s, s(0)] binds T / s(s(0))

Example

From any given non-variable term, extract a list L of all that
term’s functors with their arities

For instance, we want the query
?- functors(p(a, (X, g(b)), Y), L).
to return L/ [(p, 3), (a, 0), (f, 2), (g, 1), (b, 0)]
- Syntax Note: Prolog atoms are just functors whose arity is O
Here is the program (make sure you understand it)

functors(Term, []) :- var(Term), \.

functors(Term, [(F, Arity) | Functors]) :-
Term =.. [F | Args],
length(Args, Arity),
findall(E, (member(Arg, Args),
functors(Arg, Es),
member(E, Es)), Functors).

DYNAMIC CLAUSES

Clauses can be created, consulted or deleted dynamically
Their head relations can be declared as “dynamic”, but Sicstus
does not insist upon this, unless those relations are additionally

defined by explicit procedures

.- dynamic likes/2. forces likes to be dynamic

The most common primitives acting on dynamic clauses are:
clause - finds a clause body, given the head relation
asserta or assertz - creates a clause
retract - deletes a clause

THE “ASSERT(a/z)” PRIMITIVE

This has the form assert(Clause)

?- assert(likes(chris, prolog)).

adds to the dynamic-clause-base the clause likes(chris, prolog).

?- assert((likes(X, prolog) :- wise(X))).

adds to the dynamic-clause-base the clause
likes(X, prolog) :- wise(X).

THE “RETRACT” PRIMITIVE

This has the form retract(Clause)

?- retract((likes(X, haskell) :- crazy(X))).

deletes from the dynamic-clause-base the clause
likes(X, haskell) :- crazy(X).

Additional note

To retract all current dynamic clauses for a relation -, execute the
call retractall(P(...)) in which each argument of I is an underscore,
as in retractall(likes(_,))

Example

Simulating destructive assignment

(11 7

Suppose that a 2-dimensional array “” of numbers is represented

by a set of assertions which have already been set up using assert:
a(l, J, V) represents a[l,J] =V

Suppose now we want to update “a” so that any element previously

<0 is altered to become, say, 10. We can do this by evaluating the

call-term

forall((a(l, J, V), V<O0),
(retract(a(l, J, V)), assert(a(l, J, 10))))

Controlling the flow of computation

Prolog has many built-in predicates and operators that can be used to
control how queries are proved.

First, | will introduce a set of functions that can be used within normal
Prolog programs then | will show how these ideas can be used to create

Meta-Interpreters.

The main predicate of this type is call/1l.

This takes one argument in the form of a goal (i.e. a single term) and
checks whether the goal succeeds.

| ?- call (write(‘Hello')).
Hello?
yes

Mostly used to call goals constructed using =.., functor/3 and arg/3.

A Conjunction of Goals

A conjunction of goals (P /A Q) can be called by collecting the goals together in

round brackets.
?- X = (¥Y=[a,b,f,g], member(£f,Y)), call(X).

= [a,b,f,g]l=[a,b,f,g], member(f,[a,b,f,g]),
= [a,b,f,g] ?

The two goals Y=[a,b,f,g] and member(f,Y) are conjoined as one term and
instantiated with X.

call(X) then calls them in order and will only succeed if all the goals contained
within X succeed (hence, it is checking if the conjunction of the two goals is
true).

A Conjunction of Goals (2)

« The actual job of conjoining goals is performed by the °,” operator. (°,” =

the logical /\)

?- (3,4) = ','(3,4).
yes
* This is a right-associative operator:
— You can see this using ?- current op (1000, xfy, ',’).

= When used in a series of operators with the same precedence the
comma associates with a single term to the left and groups the rest of

the operators and arguments to the right.
— *(works in a similar way to Head a Tail list notation).

| ?- (3,4,5,6,7,8) = (3,(4,(5,(6,(7,8))))).
yes
| »- (3,4,5,6,7,8) = (((((3,4),5),6),7),8).
no

A Conjunction of Goals (2)

Because of this associativity, groups of conjoined goals can be stripped apart by
making them equal to (FirstGoal,OtherGoals).

— FirstGoal is asingle Prolog goal
— OtherGoals may be a single goal or another pair consisting of another goal

and remaining goals (grouped around °,’).

?- (3,4,5,6,7,8) = (H,T).

I

H =3,
T = 4/5/617/8 ?

no
This allows us to recursively manipulate sequences of goals just as we previously

manipulated lists.

| ?-

A = =
C = =
E

Repeated use of
same test = rec:ursion216

Why use call?

e But, why would we use call(X) as it seems to have the same function as
just placing the variable X as a goal in your code:

eg X = (Y=[a,b,f,g], member(f,Y)), call(X).
X = (¥Y=[a,b,f,g], member(f,Y)), X.

The main reason is because it keeps the solution of X isolated from the
rest of the program within which call(X) resides.

— Specifically, any cuts (!) within the conjoined set of goals X only stop
backtracking within X.

— It does not stop backtracking outside of call(X).
| ?- goall, goal2, call((goal3, !, goald4, goalh)).

— — *true — ¥ T "tail
true

true > true

“— redo redo redo

A Disjunction of Goals (;)

As well as °,” =the logical AND (/\)
We also have an operator that represents the logical OR (/).
— Goall; Goal2 = A disjunction of Goall and Goal2.

— This will succeed if either Goall or Goal2 are true.
| ?- 5<4;3<4.
yes

Semicolon is an operator (current op (1100, xfy, ;)) so it can be used
in prefix position as well:
| ?- ;(5<4, 3<4).

yes

This operator is right associative like " :
I (A;B), B = (C;D), D =

Creating a Conjoined ‘not’

Now that we can conjoin goals we can also check for their negation i.e. -
(PAQ).
Usually we are checking if a conjunction of terms in the body or a clause is
fruee.g. a(X):- b(X), c(X).
But sometimes we want a predicate to succeed only if a conjunction of
terms is false

e.g al(X):- \+ (b(X),c(X)).
* The space before the prefix operator \+ and the brackets is important. If
there was no space the interpreter would look for \+/2.

This is distinct from:

a2 (X):- \+b(X), \t+c(X).
Which is equal to the space
outside of both b and c.

Creating a Conjoined ‘not™ (2)

But when would you use a conjoined not?

— “Xis true if it is less than 4 or greater than 8
* For example, we want X to be true if it is 3 or 9.

We could represent this using a disjunction:
— (X<4; 8<X).

Or we could represent it as a conjoined not:
— \+ (4=<X, X=<8).

This is possible as logic permits this transformation:
- -PV-Q = - (PAQ)

Sometimes it might be easier to prove a goal (4=<X) rather than its
opposite (X<4) so we would need to use a conjoined not: - (P/AQ)

If... then...else

In Prolog there is a built-in operator (->/2) that allows you to make similar
constructions:

— “ifXthenY = X->Y.
—“ifXthenYelseZ' =X->Y; Z

— n.b. the; is part of the “if..then...else...” construction so its scope is limited to the
if.. construction.

These can be used at the command line or within your predicate definitions.

However, whenever we are writing Prolog rules we are already representing
an “if....then....” relationship.

— Thisrule a:-b,c,d, e->f;g.
— Isequal to a:-b, c, d, aux(X). aux(f):-e. aux(g).

